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Abstract

We study gene-environment interactions in the context of the long-term effect of
education on cognition. Our central parameter of interest is the interaction effect
between endogenous education and a predetermined measure of genetic endowment.
Education is instrumented by a reform that raised compulsory schooling in England.
We use this setting to show that two-stage least squares (2SLS) estimates of interaction
effects can be misleading when there is essential heterogeneity (e.g., selection into
gains) and complier status depends on the interaction variable. The 2SLS estimator
cannot disentangle interaction effects from shifts in complier groups. Estimating
marginal treatment effects addresses this problem by fixing the underlying population
and unobserved heterogeneity. The results show complementarities between education
and genetic predisposition in determining later-life memory, our measure of cognition.
The marginal treatment effect estimates reveal a substantially larger gene-environment
interaction, exceeding the 2SLS estimate by a factor of at least 4.7.
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1 Introduction

The recent availability of genetic data has revived the old debate in the social sciences
about nature versus nurture in determining success over the life course (see, e.g., Behrman
and Taubman, 1989; Bjorklund and Salvanes, 2011; Plug and Vijverberg, 2003). The focus is
on estimating gene-environment (G x E) interactions to assess how the effects of environ-
mental exposures or individual decisions vary by genetic endowment. These interaction

models are typically specified as
Y; = Bo+ B1Ei + B2Gi + B3Gi x Ei + Xiy + ¢, (1)

where Y; denotes a (long-run) outcome of interest, E; represents an endogenous environ-
mental exposure or individual decision, G; captures a pre-determined genetic endowment,
and X is a vector of control variables. Recent studies have focused on the causal identifica-
tion of B1, B2, and B3 by instrumenting E; and G; x E; and by removing factors correlated
with the environment from G; (see, e.g., Barcellos et al., 2018, 2021, 2025; Pereira et al., 2022;
Schmitz and Conley, 2017). As an alternative to instrumenting E;, some studies directly
estimate interactions of G; with a plausibly exogenous variable Z;, which we refer to as
G x Z (Ahlskog et al., 2024; van den Berg et al., 2023a,b).

The focus of our paper is on the estimation of the interaction coefficient, B3, which is
the central parameter in the gene-environment literature. In its intended interpretation,
it measures how the causal effect of the environment varies with genetic endowment,
all else being equal. However, as we demonstrate, the commonly used two-stage least
squares (2SLS) or reduced-form approaches may not provide a reliable estimate of this
effect, even with a valid instrumental variable. This is the case when two conditions
hold simultaneously: First, compliers to the instrument for E; have different unobserved
characteristics between different values of G;. Second, the (individual) treatment effects
of E; on Y; exhibit essential heterogeneity. This occurs when the propensity to take the
treatment correlates with the unobserved effect heterogeneity (Heckman et al., 2006).
A prominent example of essential heterogeneity is self-selection into treatment based
on unobserved gains. These conditions frequently occur in real-world settings that are
investigated with causal methods. As a result, 2S5LS conflates two different changes when
estimating the G X E coefficient: first, how the local average treatment effect (LATE) of E;
on Y; changes with G;, which is the interaction effect of interest. Second, how the complier
subpopulation of this LATE shifts as G; varies.

In this paper, we (1) comprehensively describe the problem, (2) propose a solution, and
(3) apply it to a real-world setting. Using a numerical example, we show that relying on
2SLS estimates of B3 to provide evidence on how genes and the environment interact can

be misleading in a setting with essential heterogeneity and a substantial gradient in the
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tirst-stage coefficients across different G;. In our simulation example, the 2SLS coefficient
even has the opposite sign of the actual interaction effect. We propose a solution that
maintains a fixed underlying population when comparing the effect of E; on Y; for different
values of G;. Estimating marginal treatment effects (MTEs) offers a suitable approach to
achieve this (Heckman and Vytlacil, 2005). We apply this method to the long-term effect of
education E; on cognition in later life Y; using data from the English Longitudinal Study of
Aging (ELSA). We select our sample around the pivotal cohort of a compulsory schooling
reform, which extended the minimum school-leaving age from 14 to 15 for individuals
born after 1933. Our measure of cognition is the word recall test, a widely used indicator
that has been shown to predict cognitive decline (Apolinario et al., 2016; Tsoi et al., 2017).
We use data from six waves between 2002 and 2012 when individuals in our sample were
between 65 and 80 years old. To measure genetic endowment, we use a polygenic index
(PGI), a summary measure that predicts individual-level educational attainment based on
the aggregated effects of many DNA differences between individuals. When estimating
MTEs, we rely on a recently developed partial identification method by Mogstad et al.
(2018), also used by Rose and Shem-Tov (2021).

Our paper makes three main contributions to the literature. The first is purely pedagogical.
While it is well-documented that selection into gains poses problems for 2SLS in general
(see, e.g. Heckman and Vytlacil, 2005 ), the problem that interaction effects are difficult
to interpret in this setting still deserves attention. We aim to provide an accessible and
intuitive presentation of the problem. The problem we describe is not limited to the
gene-environment literature and is, in principle, relevant to any interaction effect between
an endogenous (and instrumented) treatment variable and observable characteristics. In
Appendix F we cover other settings where researchers are interested in effect heterogeneity
by observables and where the same problems might occur, asking for the same kind of
solution. A more important contribution is to provide a transparent and easy-to-implement
solution by using marginal treatment effects in this setting. Of course, other ways exist
to separate possibly correlated observed and unobserved effect heterogeneity. Kline and
Walters (2019) discuss the general equivalence between instrumental variable methods and
control functions (Blundell and Powell, 2003; Imbens and Newey, 2009). In control function
approaches, the essential heterogeneity is absorbed by a control variable (which might
incorporate instrumental variables and functional form assumptions). Although certainly
possible, we are not aware of a control function approach in the setting of endogenous
interaction terms. Arold et al. (2025) use a control function approach in a G x E-study,
but they employ the approach by Altonji and Mansfield (2018) and base their control
function on group-level averages of observed characteristics without using instruments.
The implicit assumption is that the control function is modeled correctly (which may be a
stronger assumption than the restrictions we impose). The inability of 2SLS to incorporate
unobservable differences between complier groups that could (partially) explain gene-



environment interactions is also mentioned in Barcellos et al. (2021). They find differences
in returns to schooling between individuals with different genetic endowments and use a
linear MTE estimation to check whether unobservable factors can explain these disparities,
which is not the case in their study. Our third contribution is a substantive one to the
literature on gene-environment interactions, a dynamic field with numerous recent papers
in areas related to ours. We are unaware of any study estimating the causal effects of
education and its interaction with genetic makeup on memory in later life. Banks and
Mazzonna (2012) study the effect of the same reform we do on memory, but without
looking at gene-environment interactions. Ding et al. (2019) study the relationship between
genes/educational attainment and recall using data from the Health and Retirement Study
(HRS), but do not use exogenous variation in education. Anderson et al. (2020) estimate a
positive bidirectional relationship between educational attainment and intelligence using
genetic variants as instruments. Schmitz and Conley (2017) study whether the effect of the
Vietnam War draft lottery on schooling outcomes differs by a genetic predisposition for
education. Going beyond educational outcomes, Barcellos et al. (2018) estimate whether
genetic predisposition to obesity moderates the effect of education on health using the
UK compulsory schooling reform for the 1957 birth cohort as an exogenous variation and
a different data set. Ahlskog et al. (2024) estimate reduced-form interactions between
compulsory schooling exposure in Sweden and a set of different PGIs (i.e., they focus
on G x Z) on different outcomes. They find significant interactions for two outcomes
(wages and educational attainment), both with the PGIs for educational attainment that
we also use in this paper. However, one drawback of the focus on G x Z is that reduced-
form regressions do not differentiate between an implicit first-stage gradient in G; and
heterogeneous direct effects of Z; on the outcome along G; (i.e., through E;). Besides
Schmitz and Conley (2017) and Barcellos et al. (2018), the earliest study in economics on
how education can compensate for the effects of genetic differences is probably Papageorge

and Thom (2020), who study the impact on labor market outcomes.

Our results are as follows: Applying a benchmark 2SLS estimator, we find a zero effect of
education on recall for individuals in the lowest quintile of G;, that is, those with the lowest
genetic propensity for education. On average, moving to a higher quintile of G; goes along
with an increase in the effect of E; on Y; by an insignificant 0.1 words correctly recalled.
Using marginal treatment effects, the interaction effect is much larger than when estimating
with 2SLS: The average linearized interaction effect across all quintiles of G; indicates
that the effect of E; on Y; increases by 0.46-0.47 words per quintile. This corresponds to
roughly 10-15 percent of the standard deviation of the outcome variable. While education
does not improve memory in the group with the lowest genetic endowment, it increases
word recall by about 1.8 words in the highest quintile of G; compared to the lowest.
25LS would considerably underestimate this gene-environment complementarity. In
our application, genetic endowment is correlated with the complier status: The share of



compliers to the education reform is highest in the lowest quintile of G; (65 percent) and
monotonically decreases to 36 percent in the highest quintile. Moreover, there is evidence
of selection into gains. Overall, the 1947 UK compulsory schooling reform has increased
schooling, especially for those with lower genetic propensity for schooling (first stage
results). However, these individuals have no returns to schooling in terms of cognition.

Instead, significant returns are seen for those with a higher genetic propensity.

The paper proceeds as follows: Section 2 describes the institutional setting of our applica-
tion and the data used. Section 3 presents 2SLS estimates of gene-environment interactions
in our application Section 4 outlines the challenges in identifying the gene-environment
interplay from an econometric perspective and presents our suggested solution. Section 5
gives an overview of the partial identification approach to estimate MTEs and presents

our main results. Section 6 concludes.

2 Institutional Setting and Data

2.1 Compulsory schooling reform in the UK

In our application, we exploit exogenous variation from a compulsory schooling reform
in the UK. Based on the Education Act of 1944, two reforms were introduced to raise the
minimum school-leaving age in England, Scotland, and Wales. We use the first reform,
which took effect on April 1, 1947.1 This reform raised the minimum age for leaving school
from 14 to 15. Given that students in the UK typically entered school at the age of 5, the
1947 reform effectively extended compulsory education from nine to ten years. The first
birth cohorts to be affected by this change, i.e., the first to be required to attend school for
an additional year (the “pivotal cohort”), were those born in April 1933. This particular
reform from 1947 has served as exogenous variation for compulsory schooling in studies
on the effect of education on wages (Clark and Royer, 2013; Devereux and Hart, 2010;
Harmon and Walker, 1995; Oreopoulos, 2006), other labor market outcomes (Clark, 2023),
health (Clark and Royer, 2013; Jiirges et al., 2013; Powdthavee, 2010; Silles, 2009), health
knowledge (Johnston et al., 2015), mortality (Clark and Royer, 2013; Gathmann et al., 2015),
and cognitive abilities (Banks and Mazzonna, 2012).

To demonstrate the strong response to the compulsory schooling reform from 1947, Figure
1 shows aggregated cohort-level data from ELSA. It depicts the share of individuals with
different levels of schooling by birth cohort. The pivotal cohorts of both compulsory

IThe second part was enacted much later, in 1972, raising the school-leaving age to 16. Since we are
interested in studying memory in old age, we use only the 1947 reform. Cohorts affected by the second
reform in 1972 are, for the most part, still too young at the time of data collection for the English Longitudinal
Study of Ageing, our data source.



schooling reforms are marked with vertical lines. The highest line (circle markers) shows
how the 1947 reform caused a significant increase in the share of students leaving school
at age 15 or later from about 40% to almost 100%. The middle line (diamond markers)
shows how the second reform in 1972 lead to a still remarkable but comparably smaller
increase in the share of leaving school at 16 or later from 75% to about 90%. The lowest line
(triangle markers) can be read as a placebo test, showing the general trend in increased
years of schooling but no discontinuity at the two reform cut-offs (Clark and Royer, 2013).
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Figure 1: Education by birth cohort
Notes: This figure illustrates the shares of students leaving school at 15 or later, 16 or later, and 17 or later changed over
birth cohorts and how these shares were affected by two compulsory schooling reforms in England using data from
ELSA waves 1-9 without the sample selection described in Chapter 2.2. Vertical dashed lines indicate the first affected
birth cohorts of two school-leaving age increases. The three groups are not mutually exclusive and do not add up to
100%. The illustration is adapted from Clark and Royer (2013) to fit our definition of educational attainment.

Besides the high compliance rates, Figure 1 also reveals noncompliance. That is, despite
being disallowed by the new compulsory schooling age, some individuals reportedly leave
school at the age of 14 after the reform. According to Clark and Royer (2013), who studied
the reforms extensively, this noncompliance is primarily due to individuals born in the
summer months, who turned 15 before the start of the next school year.

2.2 Sample and Variables

Sample
We use data from the English Longitudinal Study of Ageing (ELSA), a large representative
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microdata set providing information on health and other socioeconomic characteristics of
individuals aged 50 and over in England (Banks et al., 2023). ELSA was launched in 2002
and is conducted every two years. It currently comprises eleven waves of interviews.?
We use individuals aged 65-80 from waves 1-6 of ELSA. Data collection for wave 6 took
place in 2012 and 2013 when individuals born in 1933 — our cutoff — turned 80. Thus,
starting with wave 7, only individuals born after the cutoff can theoretically enter the
sample. We exclude the 1933 birth cohort because we lack information on birth month
and cannot accurately assign this cohort to pre- or post-reform status (the cutoff is April
1933). We also restrict the data to birth cohorts ten years before and after the reform
cut-off. Finally, for our main analysis, we need to limit the data to individuals for whom
genetic data is available. This reduces the number of individuals by about 50 percent and
may introduce a selection bias if the compulsory schooling reform affects the willingness
to be genotyped. We find that the sample is selective regarding the outcome variable:
Individuals who consent to be genotyped have higher recall scores on average (see Table
A.2 in the Appendix). However, we do not find evidence of a statistically significant effect
of the compulsory schooling reform on the probability of being genotyped (see Table B.2 in
the Appendix). Similarly, the willingness to be genotyped does not interact with the impact
of compulsory schooling on the probability of going to school until at least the age of 15.
In our preferred estimation sample, we use all available observations per individual.® In
doing so, we do not assess effects at a single point in time, but implicitly receive average
effects over multiple years. The robustness of this choice concerning panel attrition and
alternative samples is addressed in Section 3.2. This sample comprises 11,027 observations
from 3,009 individuals born between 1923 and 1943, who are observed between 2002 and
2013.

Cognition

Cognitive abilities — as a broad concept — include “the ability to reason, plan, solve prob-
lems, think abstractly, comprehend complex ideas, learn quickly and learn from experience.
It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it
reflects a broader and deeper capability for comprehending our surroundings — "catching
on,” ‘'making sense’ of things, or ’figuring out” what to do.” (Gottfredson, 1997). The
sum of these abilities is called intelligence (Schiele and Schmitz, 2023). A wide range
of cognitive tests measure different aspects of cognitive abilities to accommodate this
multifaceted notion. ELSA offers several measures, including cognitive capacity, temporal
orientation, literacy, and numerical ability. We use test scores from the word recall test

in which an interviewer reads ten words to the respondent, who is then asked to recall

2For details of the ELSA sampling procedure, questionnaire content, and fieldwork methodology, see
Steptoe et al., 2013.

3199 individuals are observed once, 471 twice, 856 three times, 550 four times, 466 five times, and 467 in
all six waves.



as many words as possible. This test is administered twice: immediately after the words
are read (immediate recall) and five minutes later (delayed recall). The scores from both
instances are added together to yield a total recall score, which can range from 0 to 20.
It serves as a measure of episodic memory, susceptible to aging (Rohwedder and Willis,
2010). Episodic memory is considered a component of fluid intelligence, reflecting the
innate cognitive ability to store and retrieve information. It is distinct from crystallized
intelligence that people acquire over a lifetime (using their fluid intelligence). Word recall
has been shown to predict cognitive decline (Bruno et al., 2013; Tsoi et al., 2017) and is
an important part of measures for (mild) cognitive impairment (Apolinario et al., 2016;
Cadar et al., 2020). Furthermore, it is widely used in economics as a reliable and accessible
measure of cognitive functioning (see e.g., Banks and Mazzonna 2012; Bonsang et al. 2012;
Christelis et al. 2010; Schiele and Schmitz 2023). In our estimation sample, the total recall
score, our dependent variable, has a mean of 9.67 correctly recalled words (out of 20) with
a standard deviation (SD) of 3.37 words (see Table 1).

Education

ELSA does not provide information on respondents’ years of education, but on the age
at which they completed their continuous full-time education. However, the data is
aggregated at the low (finished age 14 or earlier) and high (finished age 19 or later) ends.
Our treatment variable E; is a binary variable equal to one if the individual has left school
at 15 or later, and zero otherwise. By design, and as observable in Figure 1, the proportion
of individuals having left school at 15 or later (i.e., having stayed in school for at least ten
years) is affected by the 1947 education reform that raised the minimum school-leaving
age from 14 to 15.

Education is assessed retrospectively, and thus potentially affected by recall bias, a common
concern in older age samples. Yet, respondents may better be able to recall the year of
school completion (especially so close after the end of World War II) than general years
of education. Moreover, Figure 1 (and also the subsequent regression analyses) match
remarkably well with the corresponding estimates of Clark and Royer (2013), who use a
survey collected from 1991 to 2004 — more than one decade before our estimation sample.*
Hence, we believe that our education information is unlikely to be significantly affected by
recall bias.

Genes
We use an Educational Attainment Polygenic Index provided by ELSA and based on Lee
et al. (2018) to measure genetic makeup. This indicator predicts educational attainment

4The corresponding first stage coefficients are 0.445 versus 0.479 — a difference smaller than our standard
error.



based on differences in genetic variants across individuals. The education PGI we use
explains 11-13 percent of the variation in educational attainment in the original discovery
sample (Lee et al., 2018). An individual’s PGI represents their genetic propensity (or
genetic risk — depending on the application) for a particular trait — not just according to one
genetic marker, but over many genetic variants. The PGI we are using thus represents in-
dividual genetic propensity for educational attainment. For a more detailed explanation of
polygenic indices and their construction, see Appendix C. The PGI is normally distributed.
Individuals whose genetic endowment puts them on the left side of this distribution
have a lower genetic propensity to pursue education; individuals on the right side have a
higher propensity. As the choice equations in Section 4 emphasize, this propensity is not
deterministic. Individuals with a high PGI are not necessarily highly educated, and highly
educated individuals do not necessarily have a high PGI for educational attainment. Our

analysis uses the quintiles of this index, yielding five equally sized groups.

When estimating gene-environment interactions, researchers often use a polygenic index
of the outcome they are investigating since it is the obvious choice and will produce an
effect. However, the choice is not set in stone. As Biroli et al. (2025) point out, “any PGI
could be used if warranted by theory or for empirical reasons”. We target the PGI towards
the environmental variable (education) by using an education PGI, and the outcome we
investigate is memory. Education PGIs are associated with several different outcomes
besides educational attainment: wealth at retirement (Barth et al., 2020), labor market
earnings (Papageorge and Thom, 2020) and socioeconomic success (Belsky et al., 2018).
In our setting, we can use the education PGI to demonstrate heterogeneous responses to
the education reform by the relevant part of the genetic endowment. At the same time,
the effect of education on cognition likely varies with genetic propensity for education —

which is what we want to estimate.

We include the first ten principal components of the genetic data as controls, which are
summary scores of the overall variation of the genetic data in ELSA, condensed into a
smaller number of dimensions. They reflect population stratification, i.e., different fre-
quencies of genetic variants among subpopulations that could be responsible for spurious
correlations with outcomes of interest. This could occur if both an outcome and certain
genetic variants are more common in one stratum of the population than in another and
they do not mate randomly (Barth et al., 2022). Price et al. (2006) show that including
principal components as control variables can mitigate these confounding effects. There-
fore, adding principal components as controls has become has become a convention in
gene-environment studies (see, e.g., Barcellos et al., 2018; Barth et al., 2020, 2022; Biroli
et al., 2025; Pereira et al., 2022). Both principal components and polygenic indices combine
information from differences of genetic variants across the population. However, they

serve different purposes: principal components capture overall genetic similarity and



population structure, while PGIs predict specific traits, such as educational attainment,

based on gene-outcome associations.”

While predetermined at conception, the effect of an individual’s genetic endowment is
not entirely exogenous. Genetic makeup is fully inherited from the parents, whose own
genetic endowment also influences the family environment in which the children are raised.
This environment, in turn, partially determines later-life outcomes, creating a correlation
between the child’s genetic endowment and their developmental context (Biroli et al.,
2025; Houmark et al., 2024). We are interested in the differential effect of E; (for which we
have a valid instrument) by educational attainment PGI. While based on predetermined
genetic variants, the PGI also reflects this correlation. Houmark et al. (2024) show that
these family genetic correlations are due to family characteristics and can be effectively and
almost entirely accounted for by parental education. We follow them as well as Barth et al.
(2020), Barth et al. (2022), and Papageorge and Thom (2020) and add parental education as
additional controls. ELSA includes information on the age at which a respondent’s mother
and father left school, truncated at both ends (age 14 or under and age 19 or over). The vast
majority (about 60%) of mothers and fathers left school at age 14 or before. Therefore, we
condense the information on education into a categorical variable with three permutations:
One if both parents have no or low education (i.e., left school at age 14 or earlier), one
if at least one parent stayed in school beyond age 14, and one if information on parental
education is missing. We have missing information for 988 individuals in our sample.

Since we are running local estimations, we choose not to drop them.

2.3 Descriptive Statistics

Table 1 shows descriptive statistics of our main sample of individuals for whom genetic
information is available as well as of “treatment” (E; = 1) and “control” (E; = 0) groups
separately. Overall, about three-quarters of the observations in the sample are in the
treatment group; 66 percent were born in 1933 or later, and 52 percent are female. The
treatment group scores significantly higher in recall than the control group. More educated
individuals (E; = 1) exhibit a more favorable genetic endowment (significantly less
observations in the first and more in the top quintile). Unsurprisingly, individuals in the
treatment group are, on average, younger since they are more likely to be born after the
compulsory schooling reform. Table A.1 extends the statistics. Table A.3 in the appendix
shows the sample means by quintiles of the education PGI. Instrument assignment, age,
and proportion of women do not vary across quintiles of the education PGI. However,
individuals in higher quintiles perform better on the recall test. The difference between an

average person in the lowest PGI quintile and an average person in the highest quintile is

>Nevertheless, we show in a robustness check that including principal components does not drive our
results (see Table 5).



1.33 words, a sizable difference compared to the overall mean of 9.67. Not surprisingly, the
probability of having more schooling is also higher in higher education PGI quintiles.

Table 1: Descriptive statistics

Main sample By E;
Mean (SD) Ei=1 E;=0 Difference (SE)
Outcome Y;
Recall score 9.67 (3.37) 10.11 8.08 —2.03 (0.07)***
Treatment E;
Left school > 15 0.78 (0.41) 1.00 0.00 —1.00 (0.00)
Polygenic index G;
1st PGI quintile 0.20 (0.40) 0.18 0.25 0.07 (0.01)***
2nd PGI quintile 0.19 (0.40) 0.19 0.21 0.02 (0.01)**
3rd PGI quintile 0.20 (0.40) 0.21 0.19 —0.02 (0.01)**
4th PGI quintile 0.21 (0.41) 0.21 0.20 —0.01 (0.01)
5th PGI quintile 0.20 (0.40) 0.22 0.15 —0.07 (0.01)***
Instrument Z;
Born 1933 or later 0.66 (0.47) 0.82 0.13  —0.69 (0.01)***
Selected Controls (for a complete list, see Table A.1)
Female 0.52 (0.50) 0.52 050 —0.02 (0.01)**
Birth year 1934.89 (5.00) 1936.29 1929.92 —6.37 (0.10)***
Parental education:
Missing 0.25 (0.43) 0.20 041 021 (0.01)***
Both left school < 14 0.57 (0.49) 0.58 055 —0.03 (0.01)**
At least one left school > 15 0.18 (0.39) 0.22 0.04 —0.18 (0.01)***
Observations 11,027 8,590 2,437

Notes: This table presents descriptive statistics using data from ELSA waves 1-6 and our main sample selection, as outlined
in Chapter 2.2. The categories for parental education include: Missing information of at least one parent, both parents left
full-time education at age 14 or before or have no education, and at least one parent stayed in school until age 15 or longer.
We include mean and standard deviation of the main sample as well as means by E;, the difference of means and standard
errors of a t-test for equality of means. *p < 0.1, **p < 0.05, and ***p < 0.01.

3 Benchmark 2SLS estimation

3.1 Empirical Strategy

We start by estimating the gene-environment interactions using “conventional” methods.
Since education is a choice variable, an OLS regression will yield biased estimates. We

estimate the following 2SLS regression:

Ei = mo+mG;+mZ + mG X Z; + X”)’ —{-f(t) + u; (2)
i = PBo+PBiGi+ BaEi+ BsGi x Ej+ X'5+ f(t) + ¢ (3)
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Eq. (2) is the first stage, where we regress education E; on our instrument Z;, genetic
predisposition G; and the interaction of G; and 7.6 Eq. (3) shows the second stage. Here,
we regress the outcome variable Y; (the total recall score for individual i) on the predicted
values E; from the first stage, G; and the predicted values (/31/><\EZ In both stages, we add
the same controls X; which include an indicator variable for sex, the first ten principal
components of the genetic data (see Section 2.2 for a description), as well as the ten
interactions of the principal components with the instrument, fixed effects for survey
wave, as well as a categorical variable for parental education. Furthermore, f(t), is a
function that captures a linear cohort trend and its interaction with the instrument Z;.
This specification estimates a fuzzy regression discontinuity model with the re-centered
distance to the reform cohort of 1933 (the cohort trend) as the running variable. Finally,
u; and ¢; capture all unobserved factors that affect outcome variables in their respective

stages. We cluster standard errors at the individual level in all analyses.

Besides the potential problems due to essential heterogeneity, this specification linearizes
the G x E effect (and the effect of G itself). This may also mask potentially interesting non-
linearities. To be more flexible, we extend our analysis by fully saturating our specification
using information on the quintiles of the education polygenic index. These effects compare
better to our MTE approach because we directly estimate effects by quintiles. Accordingly,
we estimate the following adapted model:

5

Ei=), [”g,oﬂ[Gi =g+ ”g,Aﬂ[Gi = g] x Z} + X'y + f(t) + w (4)
g=1
> of fE v e
Yi =Y ByollGi = 8] + BiiEi+ ) Byy LG = g] x Ei + X'/ + f(£) + s (5)
g=1 g=2

This is the equivalent of the 2SLS model described above in Egs. (2) and (3), but with sets
of indicator variables for the five quintiles of the PGI (G; = ¢ with ¢ € {1,2,3,4,5}). To
distinguish the coefficients from the base model, we add the superscript f. While in the
baseline first stage (Eq. 2), 712 informs about the share of compliers in the data, the n{’ A to
ngl A of Eq. (4) inform about the share of compliers by PGI quintile. In the second stage (Eq.
5), we include E; as the reference category that captures the local average treatmet effect
for the lowest quintile (ﬁ]“) The coefficients ﬁ£1 to ﬁél inform about gene-environment

interactions relative to the lowest quintile.

®Note that there are technically two first stages, one with the dependent variable E; and one with the
dependent variable G; X E;. Depending on how G,; is included, there are more. With G; as quintiles of the
PGI, there are six first stages. For the sake of simplicity, we only show one of them here.
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3.2 Assumptions

We need to assume that the compulsory schooling reform is a valid instrument to identify
the causal effects of extending schooling beyond the age of 14. Specifically, the 1933 birth
cohort cutoff must be exogenous to the individuals in our sample. This is plausible given
that the reform was announced in 1944 and the sample does not suffer from selective non-
response or attrition (discussed below). Additionally, we assume that only compulsory
schooling changes discontinuously for individuals born after April 1933, without other
factors changing simultaneously (the exclusion restriction). Finally, we assume that no

individual leaves school earlier because of the reform (the monotonicity assumption).

The exclusion restriction deserves the most discussion, for instance, as spillovers might
exist and because two significant events occurred around the time our sample cohorts were
born: the Great Depression and World War II. Although individuals may have experienced
rationing or evacuations, those on either side of the 1933 cutoff were affected similarly
(Clark and Royer, 2013). Furthermore, the compulsory schooling reform may also have
increased the general quality of schooling, affecting not only compliers, but also generating
spillover effects to always-takers. However, as Clark (2023) documents for the 1947 UK
reform, nearly all compliers attended lower-track schools that ended at the minimum
leaving age. This makes it unlikely that spillovers to non-complying groups exist. The
lower-track schools emphasized practical education, exhibited lower quality (e.g., class
size and teacher qualifications), which did not change due to the reform (as resources
adjusted to increased enrollment, see Clark and Royer, 2013). These facts suggest that
the reform did not affect the quality of schooling (not even for compliers). Thus, we can
interpret our treatment effects in terms of years of schooling (as is commonly done in this
literature). Clark (2023) also finds that the reform did not raise the probability of students
receiving formal academic or vocational qualifications. Nevertheless, as Clark and Royer
(2013) note, citing official reports from the period, “the extra year created by the 1947
change introduced some students to more advanced materials and helped other students
master more basic material,” suggesting a natural progression in curricula rather than an

overhaul.

Additionally, panel attrition may be a concern in older-age samples. If the education reform
affected survival or survey participation, it could lead to a disproportionate representation
of healthier, more educated individuals among respondents. This selective attrition could
bias the estimates if the instrument indirectly influences the sample’s composition through
differential attrition at older ages. Clark and Royer (2013) comprehensively investigated the
effect of the 1947 reform on mortality and reported no or negligible effects. Nevertheless,
we test for differential panel attrition in our sample by filling in the observations for
each individual where necessary from the first wave they were observed in until wave

6, and creating an attrition indicator if they did not respond (for whatever reason) in a
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subsequent wave. We then regress this indicator on the instrument to assess whether the
compulsory schooling reform predicts survey non-response. Table B.1 presents the results.
The estimate is negligibly small and not statistically significant. One major difference
of our sample compared to related studies (e.g., Banks and Mazzonna, 2012) is that we
exclude individuals who did not provide genetic information to ELSA. Therefore, we also
examine whether the probability of sharing genetic information jumps discontinuously
at the cutoff (see Table B.2). We find that this is not the case. We conclude that, although

panel attrition is generally a concern, it is not related to the schooling reform in our sample.

3.3 Results

OLS, reduced-form, and second-stage results

Table 2 presents the OLS, reduced form, and 2SLS regression results (Eq. 5) in Columns (1),
(2), and (3), respectively. Panel A includes controls for each quintile — but no interaction of
G with E or Z. Panel B adds these interactions. Finally, we use the standardized PGI as a
continuous interaction variable to show linear effects in Panel C . Without interactions, we
see a considerable correlation: Individuals who left school at age 15 or later recall about 1.1
words more later in life. Using the compulsory schooling reform as exogenous variation,
however, the reduced form and the 2SLS estimates suggest that the causal effect, if there
is any, is considerably smaller. We find that individuals who would have dropped out at
age 14, but had to stay in school for at least one additional year, recall about 0.15 words
more. This is a small and statistically insignificant effect. This effect is also more negligible
compared to Banks and Mazzonna (2012), who find a relevant and significant impact on
the recall score in their preferred specification. However, as we use an unrestricted sample
regarding the school-leaving age, control for G (including its principal components) and
parental education, and use additional individuals from later waves, our estimates may be

more conservative.

The OLS coefficients of G; = 2 to G; = 5 suggest that, in general, only individuals in the
highest PGI quintile score statistically significantly higher on the recall test relative to
individuals in the lowest — about 0.77 words higher than individuals in the lowest quintile.
This positive relationship between an education PGI and cognitive performance is also
documented by Jeong et al. (2024), who use data from the US Health and Retirement Study.
The interactions in Panel B use the first quintile (G = 1) as a reference category, so that
the remaining interaction coefficients are interpreted as the additional effect of higher
quintiles, relative to the first one. An additional year of education (E;) is associated with
an increase of about 0.62 words later in life for individuals in the lowest PGI quintile. The
markups on this association for individuals in the four higher PGI quintiles (E; x (G; = g))
are positive across all quintiles. However, their magnitude varies. For individuals in the

third quintile, an additional year of schooling results in about 0.45 more words recalled
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than for individuals in the first quintile. For the fourth quintile, this relative premium
versus the lowest quintile increases to 0.76. Except for the interaction coefficient of the
fourth quintile, they are not statistically significant, but importantly, all indicate a positive
gene-environment interaction. All in all, this suggests that the association between genes,
more education, and memory are mutually reinforcing. When we include the standardized
PGI as a continuous variable (in a separate regression, shown in Panel C), its interaction
coefficient suggests that a one standard deviation increase in PGI is associated with an
additional rise in recall score by 0.18 words. However, our OLS results only represent

correlations.

Reduced-form estimates that regress the instrument Z; and its interaction with G; directly
on recall are reported in Column (2). Our 2SLS estimates are reported in Column (3).
The coefficient of the reduced form without interacting with G; is almost zero (Panel A).
Nevertheless, when considering gene-instrument interactions (Panel B), we see positive
effects for all quintiles except the lowest. However, only effects for quintiles two and five
have a relevant size, and none of the interaction coefficients are statistically significant.
Additionally, we visualize the reduced form alongside the first stage using sample means
for each birth cohort in Figure B.1 in the Appendix. The corresponding coefficients are
reported in Table B.3. When considering the raw means like this, there are apparent and
large differences by G; in the first stage that discussed in the subsequent section, but little
to no differences in the reduced form. The 2SLS regression for education finds a small,
positive, but not statistically significant effect of more education on later-life recall when
not interacting with education PGI (Panel A). Furthermore, there is a zero effect of an
additional year of schooling on recall for those in the lowest PGI quintile (Panel B) and
a positive estimate for individuals in the upper quintiles. The standard errors are large,
so we cannot be certain that these interactions differ from zero. The linear interaction
effect using a standardized PGI (Panel C) is also close to zero. Based on these results, we
would conclude that, after resolving the endogeneity problem with E; by instrumenting —
if anything — there may only be a small positive interaction effect that cannot be precisely
estimated. The cognitive returns to education are likely not much higher for individuals
with higher genetic endowment. However, consistent with the problem outlined in Section
4, recall that when comparing the effects between two quintiles, the complier group also

changes, which may offset the small and monotonic gene-environment interaction.

First-stage results
We report the coefficients of Z; by G;, that s, n{’ A to ngl A of Eq. (4) in Figure 2.7 It shows that
overall, there is a large share of compliers to the education reform in the data. However, it

varies substantially over the quintiles of the PGI. Complier share monotonically decreases

7Regression results are reported in Table B.3 in the Appendix.
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Table 2: OLS, reduced-form and 2SLS estimates

Dependent variable — total recall score

OLS Reduced form 2SLS
ey 2 (©)
Panel A: baseline estimate, w/o interactions
E; 1.099 (0.138)*** 0.154 (0.423)
Z; 0.075 (0.209)

Panel B: Including nonlinear interactions with PGI quintiles

E; 0620  (0.245)*** —0.021  (0.449)

Z —0.022 (0.294)
G; = reference category reference category reference category
G =2 0.187 (0.269) 0.355 (0.257) 0.239 (0.397)
G =3 0.195 (0.274) 0.558 (0.265)** 0.524 (0.451)
Gi = 0.177 (0.270) 0.802 (0.246)*** 0.784 (0.448)*
Gi =5 0.774 (0.314)** 1.084 (0.266)*** 0.871 (0.591)
E; x (Gi = 1) reference category reference category
Ei x (G =2) 0.349 (0.325) 0.314 (0.497)
E; x (G; =3) 0.452 (0.331) 0.091 (0.552)
Ei x (G; =4) 0.759 (0.328)** 0.049 (0.577)
E; x (G;=5) 0.433 (0.364) 0.394 (0.698)
Z; % (Gi = 1) reference category
Zix (Gi=2) 0.185 (0.317)
Zi x (Gj=3) 0.053 (0.327)
Zix (Gi=4) 0.028 (0.316)
Zi x (Gj =5) 0.167 (0.330)
Panel C: Including linear interaction with continuous PGI
E; x G; 0.179 (0.111) 0.011 (0.209)
Z;i x Gj —0.008 (0.102)
Controls Yes Yes Yes
Observations 11,027 11,027 11,027

Notes: This table presents OLS, reduced-form and 2SLS estimates of the effect of staying in school until at least age 15 (E;), an education
PGI (G;) and their gene-environment interaction (G x E) on recall later in life using data from ELSA waves 1-6 and our main sample
selection, as outlined in Chapter 2.2. In panel A, we show estimates of education (respectively, the instrument Z; — born in 1933 or later)
on recall without interacting with genetic endowment. For estimates in Panel B, we use quintiles of the polygenic index and estimate
non-linear interaction effects. Panel C shows estimates of a linear effect when including the standardized PGI as a continuous variable.
Coefficients in all panels are obtained from separate regressions. Controls in each case include a linear cohort trend, its interaction
with the instrument, sex, survey wave fixed effects, parental education, the first ten principal components of the genetic data as well as
interactions of each principal component with the instrument. Standard errors clustered at the individual level shown are in parentheses.
*p <0.1,"p < 0.05 and **p < 0.01.

along the PGI. In the lowest quintile (G; = 1), 65 percent of all individuals increased their
length of education due to the reform. The share of compliers reduces to a still sizable 36
percent in the highest quintile. The compulsory schooling reform had a more substantial
impact on individuals in the lowest quintiles of the PGI, who are disadvantaged in terms of
the genetic endowment that predicts education. Therefore, the reform was likely effective

in targeting disadvantaged children. It drastically increased their probability of staying
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in school until at least age 15. Our estimates in Table 2 suggest that the reform may not
have successfully reduced differences in the cognitive returns to education but may have
increased them. This finding is consistent with Barcellos et al. (2021), who document
that the UK’s 1972 compulsory schooling reform reduced disparities in education and
qualifications between children from different backgrounds but ultimately increased

differences in socioeconomic status.

Our first-stage results document that the complier status and the genetic type correlate
substantially. We will now demonstrate that this finding provides a necessary condition
for a 2SLS estimate of the G; x E; coefficient to be problematic in our setting — it may not

have a well-defined causal interpretation.

0.7

o
o)
1

Left school at 15 or later

=)
~

1
——

0.3

3
PGI quintile

Figure 2: Strength of the first stage by quintiles of the polygenic index
Notes: This figure shows the complier shares by PGI quintile using data from ELSA waves 1-6 and our main sample

selection, as outlined in Chapter 2.2. The shares correspond to 7'[{ A to 7'[]5( A the five estimated first-stage coefficients of
Eq. (4). We add 95% confidence intervals. The point estimates and their standard errors are reported in Table B.3.

4 Potential identification problems of interaction effects

4.1 The problem

We are interested in the effect of a particular environment or life decision (here, education),
E;, on an outcome Y; (here, old-age recall ability) and how this effect interacts with genetic
endowment G;. For simplicity, first assume that E; and G; are binary variables. Each
individual has four potential outcomes, Yij (Gj), j € {0,1}, G; € {0,1}, where j denotes
educational status and G; the attributes of genetic endowment. For example, Yil (0) is the
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potential outcome with a high educational level (E; = 1) and a low genetic propensity
(G; = 0). However, only one of the four is realized and observed by the researcher. The
observation rule is

Y; = E-G;i-Y/(1)+E-(1-G;)-Y/(0)

Y1) - YO(1) - Y} (0) — Y?(O))Gi « E;

The second equality shows how the observation rule corresponds to the G x E-workhorse
model in Eq. (1) which, for ease of exposition suppresses that the slope coefficients might

be individual-specific, allowing for heterogeneous treatment effects:
Yi = Po+ B1Ei + p2Gi + B3Gi X Ej +¢; (6)

The gene-environment interaction effect is calculated as Y} (1) — Y?(1) — (Y}(0) — Y?(0)),
that is, the difference in the effect of E; on Y; when G; = 1 (which is Y} (1) — Y?(1)) and the
effect of E; on Y; when G; = 0 (which is Y} (0) — Y?(0)).

Assume that G; is pre-determined while E; is a choice variable and, therefore, endoge-
nous.® Further assume that we have a binary instrument Z; that fulfills the classic LATE
assumptions (Imbens and Angrist, 1994). Expressing the gene-environment regression
equation as two separate regressions for G; = 0 and G; = 1 yields

Y; = ,BO + ﬁl Ei+¢; forG;, =0
Yi = (,Bo +,32) + (,31 —f—ﬁg)Ei + & for G,‘ =1

8The extension of our framework to an endogenous G; entails the same kind of problems. Our proposed
solution applies to this case but is not straightforward in applications as it requires an instrumental variable
for G;. In Schmitz and Westphal (2025), we apply marginal treatment effect (MTE) estimation with two
endogenous variables in a different context, namely causal mediation analysis. However, the estimation of
interaction effects with two endogenous variables is beyond the scope of this paper.
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In Wald notation, separately estimating 2SLS regressions for G; = 0 and G; = 1 yields the

following estimates:

E[Y;|Z; = 1,G; = 0] — E[Y;|Z; = 0,G; = 0

2 = ]
= f =
Pl = BEZ=1,G=0-EEZ =0, =0 o
SO E[Yi|Z: =1,G; = 1] — E[Y{|Z =; 0,G; = 1]
€ = forG;, =1
Prtbs = Rz =1,G=1]-E] ] l

—E[E|Z;=0,G =1

Using the LATE theorem (Imbens and Angrist, 1994) which states that 25LS estimates are

average treatment effects for the compliers, we can rewrite these expressions as:

i = E[Y(0) - Y(0)|C(G; =0))

1

Bi+Bs = E[Y}(1) - Y (1)|C(G =1)]

where C(G; = 0) stands for compliers within the group G; = 0 and C(G; = 1) for compliers
within the group G; = 1. The mechanics of the LATE require that the group-specific effects
(B\l and Bl + ,33) are average treatment effects for the G;-specific compliers. Without further
covariates, the joint interaction regression of Eq. (6) (where Z; and Z; x G; are used as
instrumental variables for E; and E; X G;) yields the same results as the two separate

estimations and delivers the estimate

Bs = (B1+ Bs) — B1 = E[Y} (1) — Y2(1)|C(G; = 1)] — E[Y}(0) — Y2(0)|C(G; = 0)] (7)

This shows that the 25LS estimate of the interaction coefficient puts together two effects
of two potentially different groups: the effect of E; on Y; given that G; = 1 in the group
C(G; = 1) and the effect of E; on Y; given that G; = 0 in the group C(G; = 0). Hence, an
estimated interaction effect via 25LS could come from two sources: actual differences in
the effect of E; on Y; by realization of G; and/or differences in these effects between the
groups C(G; = 1) and C(G; = 0).

Put differently, this implies that a 2SLS estimation does not yield a well-defined interaction
effect if two conditions hold simultaneously: First, the individual response to the instru-
ment depends on G;. Second, the (individual) treatment effects of E; on Y; exhibit essential
heterogeneity. This occurs when the propensity to take the treatment correlates with the
unobserved effect heterogeneity (Heckman et al., 2006). As a result, 2SLS estimates may

differ in size from true interaction effects.

A simple simulation model visualizes this potential problem. The model and its parameter-
ization are outlined in Appendix D. Set up as an illustrative example, Figure 3 shows the
average effects of E; on Y; (depending on G;) for four groups in the simulated data. Group

1 on the left are always-takers (AT), irrespective of their realization of G;. This is because
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their gains from E; are so large that they choose more education regardless of Z; and G;.
The example also produces individuals that are always-takers when G; = 1 but compliers
when G; = 0 (Group 2), compliers when G; = 1 and never-takers (NT) when G; = 0 (Group
3) and never-takers, irrespective of G; (Group 4). Absent simulated data, many of the effects
depicted in Figure 3 are unobserved by the researcher. We sort these four groups on the hor-
izontal axis according to their willingness to take education E;. Those on the left are most
willing, and those on the right are least willing. The blue triangles show E[Y}(1) — Y?(1)],
the first part of the interaction effect. The red circles show E[Y}(0) — Y?(0)], the second
part. Thus, the interaction effect for each group is the difference between their blue triangle
and red circle. Our data-generating process is set up so that the interaction effect equals
1.5 for each individual and, consequently, for each group. However, as per Eq. (7), 2SLS
calculates it as the difference between the filled blue triangle and the filled red circle, that is
E[Y}(1) = Y?(1)|C(G; = 1)] — E[Y}(0) — Y?(0)|C(G; = 0)] = 0.2 — 1.4 = —1.2. Not only
is the estimate different in magnitude, but because of how our example is set up, it is even

negative while the true interaction effect is positive.

67 A /N E[Y'(1) - Yo(1]
O ELY(0) - Y/0)]
1 O
AN
—~ 27
g ®
>~
- A
S o A
>~
O
-2 O
4+ Group I: Group 2: Group 3: Group 4:
AT (G=1) AT (G=1) C(G=1) NT(G=1)
AT (G=0) C (G=0) NT (G=0) NT (G=0)

Figure 3: Effects of E; on Y; by G; and complier type in the simulation model
Notes: This figure visualizes stylized potential outcomes from our simulation model. Potential outcomes, their
differences and resulting treatment effects are defined by the data-generating process outlined in Appendix D using
generated data.

The figure also illustrates the conditions under which 2SLS does not fail: This occurs
when either (i) the circles and triangles are on horizontal lines, meaning both complier
groups have the same effect of E; on Y;, and/or (ii) G; does not affect the complier status
of individuals, meaning groups with C(G; = 1) and C(G; = 0) do not differ on average.
This is the case when G; does not affect E;. We will elaborate on this point in the following

sections.
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4.2 A solution

We suggest going beyond estimating the two points that form the 2SLS estimate. Instead,
we propose to estimate the MTE curve (see, e.g., Heckman and Vytlacil, 2005) by genetic
endowment G;. The MTE framework expands the discrete points from Figure 3 to continu-
ous functions on the unit interval. An introduction and more formal account of MTEs are
presented in Section 5.1. Exemplary stylized MTE curves from simulated data are shown
in Figure 4.

= E[Y'(1)-Y(1)]
== E[Y'(0)-Y0)]

YI(G) - YUG)

T
0.0 0.2 0.4 0.6 0.8 1.0
Unobserved distaste for education, UE

Figure 4: Marginal treatment effects of E; on Y; by G; in the simulation model
Notes: This figure shows stylized marginal treatment effect curves in our simulation model. The differences in potential
outcomes are defined by the data-generating process outlined in Appendix D using generated data.

Again, the interaction effect is the difference between the blue solid and the red dashed
curve. In our simulation example, it is always 1.5, but in practice, the two curves do
not need to be parallel. The interaction effect may differ along the x-axis, which, as
before, represents the willingness to take education. Applying the MTE framework, this
willingness is more precisely the unobserved distaste for education, which we call UF (see
Section 5.1).

There are several ways to translate the two curves into interaction effects reflecting the
choice of subsamples for whom the effects are estimated: They can be evaluated at certain
points on the x-axis or over intervals that represent the location and shares of different
groups (always-takers, compliers, never-takers). For example, one possibility is to compute
the difference at a specific value of UF, say 0.4. The advantage of this method over 2SLS
estimation is that unobserved heterogeneity is fixed. This allows us to make correct vertical
comparisons of the two lines and yields a consistent, albeit local, estimate of the interaction
at UF = 0.4. MTEs can also be used to estimate all treatment parameters, depending on
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how they are aggregated and how MTEs in different areas of the unit interval are weighted.
In principle, it is possible to compute interaction effects using the MTE curves with 2SLS
weights either for C(G; = 1) or C(G; = 0). In our application below, we use a simpler
solution. We will aggregate the MTE results to receive the average interaction effect for
all individuals on the UF interval between 0.55 and 0.85, visualized by the two vertical
lines in Figure 4. We choose this interval since most of the compliers to the education
instrument in our application are located in this area, see Section 5. We do this mainly to
maintain comparability to 2SLS/LATE estimates.

When does the problem with 2SLS, outlined in Section 4.1, not occur? First, whenever G;
does not affect the complier status of individuals such that groups with C(G; = 1) and
C(G; = 0) do not differ on average. This is the case when G; does not affect E;. In this case
— although there may be differences in potential outcomes between groups — there would
be only one complier group, irrespective of G; and 25LS would estimate the interaction
effect correctly according to Eq. (7). Second, without selection into gains (or losses), that
is, when individuals do not self-select into education based on the unobserved gain (loss)
from treatment. The simulated data leading to Figure 4 show the case of selection into
gains. Those with the highest effects of education on cognition are those with the highest
likelihood to take education. This holds both for the blue solid curve (G; = 1) and the red
dashed curve (G; = 0). Without this type of selection, both curves would be horizontal
and all red circles in Figure 3 would be on a horizontal line, as would all blue triangles.
Then, the effects of E; on Y; would not differ by complier type. Even though 2SLS would
still make the wrong comparison (filled blue triangle minus filled red circle), the resulting
interaction effect would correspond in size to the correct group-specific interaction effect.

Nevertheless, we believe both conditions that lead to 2SLS estimates failing to represent
true interaction effects are likely present in many real-world scenarios. Selection into gains
has widely been documented in the context of education (Carneiro et al., 2011, Nybom,
2017, Kamhofer et al., 2019, Westphal et al., 2022). Moreover, Barcellos et al. (2018) and
Barcellos et al. (2021) show differences in first-stage responses to a compulsory schooling
reform according to G;. Such self-selection into environments according to genetic makeup
has long been established in the G x E literature as “active gene-environment correlation”,
where the environment mediates the effect of genes on the outcome (Biroli et al., 2025;
Plomin et al., 1977; Plomin, 2014). Nevertheless, it may not always be the case that an
inappropriate 25LS comparison leads to a significantly different or — as in our simulation
above — even reversed sign of the estimate.

In the G x E literature, many studies use an exogenous environment, such as a policy
change, which we refer to as Z;. Hence, these studies estimate reduced-form G x Z inter-

actions. Muslimova et al. (2025), for instance, use a firstborn indicator as the measure of

9We show robustness checks for other intervals in Table 5.
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environment, which is not an individual decision, and hence, exogenous to the individual.
In other studies, not every individual is affected by a change in Z;. Examples include
Schmitz and Conley (2017, where Z; is the Vietnam draft lottery which provides incentives
for education, the implicit E;), van den Berg et al. (2023a, where Z; is a vaccination cam-
paign, and the implicit E; would be measles infections), van den Berg et al. (2023b, with
Z; constituting a sugar derationing policy, with the implicit E; being the maternal sugar
conumption), and Ahlskog et al. (2024, where Z; is a compulsory schooling reform shifting
education, as in our setting). As in our study, Z; constitutes an incentive for the underlying
individual decision (or behavior) E; we are interested in. While the focus on G x Z can
be the policy-relevant effect (depending on the context), the focus on the reduced form
does not solve problems with essential heterogeneity. As shown in Appendix E, the G x Z
interaction may be driven solely by a first-stage gradient, even if the (latent structural)
G x E interaction is absent.

The problem and possible solution we identify have implications that extend beyond
the estimation of gene-environment interactions. In theory, they apply to any interaction
effect of an endogenous, instrumented treatment with observable characteristics, provided
there is essential heterogeneity and a first-stage gradient with respect to the interaction
variable. The consequences of 2SLS failing to represent true interaction effects are difficult
to generalize. Therefore, Appendix F covers several specific applications from the literature
that go beyond the gene-environment setting in which these problems might occur and in
which estimating marginal treatment effects could be warranted.

4.3 Going beyond a binary representation of G

The problem and its solution are not specific to cases where G; is binary. On the one hand,
our solution requires a discrete G; because we will estimate separate curves by G;. On
the other hand, generating a binary indicator of genetic endowment from a continuous
polygenic index entails a loss of information. Recall that in our application, we transform
the continuous index into quintiles, i.e., a discrete and ordered measure that takes the
values ¢ € {1,2,3,4,5}. Consequently, the number of potential outcomes we estimate
increases from four to ten. In Table 3, we list these potential outcomes and how to calculate
the effect of E; on Y; and the G x E interaction by genetic type, i.e., quintile of the polygenic
index. The reference group is the first (lowest) quintile. Accordingly, all interaction
effects are calculated in comparison to this quintile. For example, the gene-environment
interaction effect of the fifth (highest) quintile is the difference between the effect of E; on
Y; for G = 5 and the effect of E; on Y; for G = 1.

Extending the setting to a more complex (but still discrete) classification has advantages.

We can make better use of the rich variation of the polygenic index and account for possible
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Table 3: Potential outcomes and calculation of MTEs using quintiles of the
polygenic index

Ei=j Individual treatment effects for
0 1 the effectof E; on Y; the gene-environment interaction
1 Y1) Y1) 5 Vi) =) () = Y1) = (Y1) = Y2(1))
2 Y Y2 Y@-Y@  (@)-Y©)- (1) -x1)
Gi=8 3 Y3 Y3 % Yi3)=Y)3)  (Y[(3)-YP(3)) - (¥ (1) - Y1)
4 @) Y4 Y@ -@) (M@ -Y@) - (1) -Y1)
5 06) Y/6) (5 -Y06) (Y6 -16) - (1) -0)

Notes: This table lists all combinations of potential outcomes when G; corresponds to quintiles of the PGI such
that G € {1,2,3,4,5} (left panel). The right panels show how to compute different individual treatment effects,
including the interaction effects at every quintile we are after. We chose the first (the lowest) quintile as the
reference. All effects are therefore calculated in relation to this group.

nonlinearities in the interaction effects between different sections of the distribution. Of
course, the choice to use quintiles is arbitrary. Barcellos et al. (2018) and Barcellos et al.
(2021) show differences in their results according to the terciles of the education polygenic
index. This is already considerably less restrictive than using a binary representation. The
use of quintiles offers a further improvement over terciles. While the general problem
is present independent of the binning choice underlying the PGI, the more granular the
binning, the more likely it is to detect it by finding a meaningful first-stage gradient or
eventual interaction effects. At the same time, it allows us to estimate gene-environment
interactions at more points across the polygenic index’s distribution, which we can use to
detect a possible non-linear evolution of interaction effects across the index. Lastly, using
more bins of G; increases the identifying variation when estimating MTEs with binary
instruments.

5 MTE estimation of the G X E interaction

5.1 A brief introduction to MTEs

We start by briefly summarizing the classic MTE framework by Heckman and Vytlacil
(2005), adjusted to our notation. See Heckman and Vytlacil (2005) for an extensive intro-
duction to MTEs, their derivation, and traditional ways to estimate them with continuous
instruments.

Assume that the potential outcomes of individual i are defined by the following functions:
Y/(Gi) = W/ (G;, Xi) + €(G;), j € {0,1}, G; € {0,1}, where j denotes potential outcomes
of educational status and G; the attributes of genetic endowment. 1/(G;, X;) is a function
of genetic endowment G; and observable characteristics X;, and sjl.(Gi) is an unobservable
part.
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We model the choice E; in a generalized Roy framework (Roy, 1951), where individuals
choose E; if the (expected) returns to education exceed monetary and/or non-monetary
costs C; = yC(G,-, X, Z;) + LIIC . Costs depend on G;, the observable characteristics X;, an
instrumental variable Z; and an unobservable term U-. Note that Z; does not directly

affect Yij (G;). The decision rule for E; (depending on the realization of G; = g) reads:

E(G)=1 & YNG)-YG) > C

& wlG, X;) — (G, X)) — u(Gi, X1, Zi) > — (e} (G;) — €2(G;) — Uf (Gy))
= wb (G, X, Z) > Vi(G))

While not necessary for any theoretical result, u*(G;, X;, Z;) = ' (G;, X;) — u°(G;, X;) —
,uC(Gi, X;, Z;) can be represented as a linear index, such as:

“l/lE(Gi, X, Zz) =10+ m1G; + mZ; + m3Z; - Gi + tX; + VZ(GI)

where V;(G;) = —(e}(G;) — &¥(G;) — UF) is the unobservable term. The decision rule
implies that E; correlates with ¢! (G;) and ¢)(G;) and, thus, V;(G;), which renders E; en-
dogenous. In the spirit of Heckman and Vytlacil (2005) we rewrite the choice equation
as:

E(G) = 1{uk(G, X;, Z;) > Vi(G)}

The second step applies a monotonic transformation Fy(-) — which is the cumulative
density of V;(G) — to both sides of the inequality. Fy (-) evaluated at the point u*(G;, X;, Z;)
is defined as Pr(V;(G) < uf(G;, X;, Z;)) and, referring to the choice equation, the same as
Pr(E(G; = 1)|X;, Z;). This choice probability based on observable characteristics is the
propensity score, and we abbreviate it by PS(G;, X, Z;). Irrespective of the underlying
distribution of V;(G), the unobserved term UF is uniformly distributed on the unit interval
and comprises the unobserved heterogeneity correlating with the decision to take E;. Low
values of unobserved resistance to more education UZ.E increase PS(G;, Xj, Z;), leading to
E; = 1. This corresponds to high unobserved preferences for E;, whereas large values of
UF indicate a high distaste for E;.

24



MTE:s are estimates of the causal effect of education on the outcome Y; at certain values
of Uf = u. Thatis, E[Y(G) — Y°(G)|UF = u]. The MTEs are identified by those indi-
viduals who, at UF = u, are indifferent between choosing E; = 0 and E; = 1. Referring
to the choice equation, this is the group for whom the realization p of the propensity
score PS(G;, X, Z;) = p = u. For our framework, the quantities E[Y}(G)|UF = u] and
E[Y?(G)|UF = u] are essential (as their difference is the MTE). We follow the literature
and call these quantities marginal treatment response curves (MTRs).

Note that manually conditioning on a more narrow PS range first and then estimating Eq.
(6) in this more homogeneous sample only works if PS (and Z) is continuous.!? In our
setting, PS is discrete at the cutoff. Our total variation in PS is equivalent to the instrument
response types. Within G, only the binary Z affects PS, implying that between G, it is
impossible to make the propensity scores more homogeneous. We have to estimate MTEs.

5.2 Options for MTE estimation

There are many different ways to estimate MTRs and MTEs, depending on the underlying
data, setting (e.g., continuous or binary instrumental variables) and the assumptions the
researcher wants to impose (e.g., functional form assumptions for the MTE, separability
between observed and unobserved terms). In our case, with a binary instrument, there are
three options.

1. Estimate different expected values of potential outcomes E[Y! (G)|AT], E[Y}(G)|C],
E[Y?(G)|C], and E[Y?(G)|NT] (see Imbens and Rubin, 1997) for each value of G;.
Plotted on the UF unit interval and assuming linearity, we can fit lines through each
pair of points, one for treated and one for untreated potential outcomes (Brinch et al.,
2017), which provide the MTRs. The linearity ensures that the lines run through
the respective (type-specific) midpoints on the UF scale. The difference between the
two MTR lines is the linear MTE by G;, and the four differences between the five
Gi-specific MTEs inform about the interaction effects.

2. Relax the linearity assumption but impose additive separability between controls

X; and error terms. That is, specify the potential outcomes Y!(G;) = u/(G;, X;) +

]i(Gi), as we have already done above, instead of the more general form Yl-] (Gj) =

(G, X;, 8]1) with some arbitrary function f. This allows variation in X; to paramet-

€

rically or semi-parametrically identify the MTEs, since a binary instrument alone
cannot provide this (Brinch et al., 2017).

190bservables need to be partialled out before a local linear regression can be applied. This is the
traditional method of identifying the MTE semiparametrically. Conditioning on PS and estimating Eq. (6)
by 2SLS does not work as one would likely drop observations based on realizations of Z, rendering the
conditional sample endogenous.
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3. Allow for a wide range of flexible polynomial shapes of the MTEs and subsequently
restrict the shapes. This can be achieved by requiring the curves to reproduce ob-
servable sample analogs and imposing further reasonable assumptions derived from
theory and the data. The target parameter the researcher aims to identify can be
bounded by the two shapes that produce minimum and maximum values (Mogstad
et al., 2018).

A linearity assumption is hard to justify a priori. Furthermore, although additive separabil-
ity is commonly assumed across the entire literature that uses regression models, we do not
benefit from it for a semi-parametric identification of the MTEs. This is because we only
use a sparse set of control variables that do not add sufficient variation in the propensity
score, which would help identify substantially more than the four points from the first
approach. Overall, the third approach appears to be the most suitable for our setting.
Nevertheless, we first estimate linear MTEs according to Brinch et al. (2017). They help
illustrate the setting and show general trends. They are also informative about underlying
shape restrictions. For our main approach, we relax this linearity restriction and allow for

flexible polynomials.

We begin by estimating type-specific expected outcomes, that correspond to group means
in the data: E[Y}(G)|AT], E[Y}(G)|C], E[Y?(G)|C], E[Y?(G)|NT]J; as well as the shares of
AT, C, and NT for each quintile of the polygenic index. Appendix I presents the details on
generating these 35 values by applying the Imbens and Rubin (1997) method. We visualize
the 20 means (circles and diamonds, depending on treatment status) as well as the 15 type
shares (horizontal lines at the bottom) in Figure 5. Again, we sort the three types according
to their willingness to take education on the unit interval. Always-takers have the highest
willingness and are located at the left. For example, the share of always-takers in the
lowest PGI quintile (lowest horizontal line) is 22 percent. The share of compliers with
G; = 11is 68 percent. They are located between 0.22 and 0.9 on the UF unit interval. The
remaining 10 percent are never-takers. Following Kowalski (2023), we use the midpoints of
the range where each type is located to place the potential outcomes (circles and diamonds)
on the x-axis, while the y-axis measures the size of the estimated potential outcomes. The
blue circles denote treated potential outcomes E[Y](G)] while the red diamonds denote
untreated potential outcomes IE[YZ.O(G)]. The numbers next to the markers refer to the

realization of G;.

The lines through the points produce MTRs under a linearity assumption, which allows us
to identify them by the two points. In principle, the lines can be extrapolated to the full unit
interval and taking differences between E[Y}(G)|UF = u] and E[Y?(G)|UF = u] would
yield the MTEs by G;. The comparison of the resulting five MTEs provides insight into
gene-environment interactions. However, as mentioned above, the linearity assumption,

which will drive the final results, is hard to defend a priori. Nevertheless, this analysis has
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Figure 5: Linear potential outcome curves

Notes: This figure shows the 20 estimated potential outcomes lE[Yl] (G)] using data from ELSA waves 1-6 and our main
sample selection, as outlined in Chapter 2.2. The lines through them represent linear MTRs. Red diamonds refers to
potential outcomes for E; = 0; blue circles to E; = 1. Thus, for example, the red line labeled “1” shows our estimate of
the potential outcome curve of Y?(1); the blue line labeled “3” shows the curve for Y} (3). Horizontal lines at the bottom
show type shares by quintiles of the educational attainment PGI and their location on the unit interval in ascending
order, starting with G; = 1 represented by the lowest (black) line and G; = 5 by the highest (lightest) line. We provide
detailed descriptions of potential outcomes as text with arrows for G; = 1 (as an example and to maintain readability).

important implications for our bounding approach to compute our main results (Section
5.3). Treated potential outcomes (blue) are higher for always-takers than compliers, causing
the E[Y}(G)|UF = u]-MTR curves to have a negative slope. Therefore, there seems to be a
correlation between types and our dependent variable. Moreover, the E[Y! (G)|UF = u]-
MTR curves are fairly parallel, with no substantial slope differences. They represent level
shifts in treated outcomes by G;. These results will be used to justify restrictions 3 and 5 in
Section 5.3, see below.

The picture is less clear for the untreated outcomes (red diamonds). Here, we see that
the outcomes of the untreated compliers are, on average, slightly smaller than those of
the treated compliers, suggesting positive effects of education on recall. We can replicate
the 2SLS finding of a zero effect for C(G; = 1) and positive effects for C(G; = 2) and
C(G; = 5). However, the estimates for never-takers are less clear, as they are above those
for the untreated compliers for the first and second quintiles, resulting in positive slopes of
the two lowest E[Y?(G)|UF = u]-MTRs. Given this ambiguous result and the small share

of never-takers in the data, we include a robustness check of our main result where we

27



estimate MTEs without relying on never-takers in Section 5.6. However, connecting to
the argument in Clark and Royer (2013), never-takers are the youngest in their class and,
when leaving school. Hence, as it contains valid information, we opted to use never-takers

in our main specification.

5.3 MTE estimation following Mogstad, Santos, and Torgovitsky (2018)

As our main approach, we now sketch the partial estimation method suggested by Mogstad
et al. (2018) and recently applied by Rose and Shem-Tov (2021). It allows a transparent and
credible estimation of marginal treatment effects when the instrument is binary or when
the variation in the instrument does not sufficiently identify marginal treatment effects
over the whole support of the propensity score. This is the third approach mentioned in
Section 5.2.

The approach assumes a parametric shape of the MTR, which, however, is extremely
flexible. The parameters of the MTR are derived from a linear programming exercise
as follows: (i) Among all theoretically possible MTRs, consider only those that fulfill
certain restrictions. These restrictions are set by the researcher and we lay them out
below. (ii) Among all MTRs that fulfill the restrictions find those that maximize the target
parameter. (iii) Among all MTRs that fulfill the restrictions, find those that minimize
the target parameter. As a result, we get a bound around the target parameter. Figure 6
presents a stylized and simplified representation of the procedure using simulated data.

Our target parameter is the average difference in the effect of education on recall between
G; = 5and G; = 1 on the interval UF € [0.55,0.85]. That is, the interaction effect of E;
and G; when turning from the lowest to the highest G-quintile. We choose the interval
[0.55,0.85] because this is the interval that is always covered with compliers from every
quintile, see the horizontal lines in Figure 5. While this should approximate the underlying
population that determines the 2SLS effects well, we will also assess the robustness of
this choice for our main result. To get a sense for the width of this interval, note that by
definition, it should cover 30 percent of the overall population. Additionally, the average
UF increases by approximately 0.07, on average, from one PGI quintile to the next. Both
facts underscore that this interval encompasses a relevant share of the population.

The flexible parametric form of the MTRs is achieved by specifying them as Bernstein
polynomials. The Bernstein polynomials are defined as

n

EY/(G)1UF =,Gi =g = Y- 6l () )ura -,
v=0
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where u is a specific point on the unit interval, j refers to the treatment state, g is the PGI
quintile, and 7 is the polynomial degree. We choose n = 5. Therefore, we haven +1 = 6
parameters (%g ,...,0/%) that determine each MTR function.

For pedagogical reasons, the stylized representation in Figure 6 and our description of
the approach are shown here as an iterative process, whereas in reality, it is a joint linear
optimization. In Panels (a) and (b), red curves show those that have been discarded after
applying the respective restrictions. Blue curves are the candidates that remain. In Panel
(a) of Figure 6, we illustrate numerous different MTR curves for E [Y{ (G)|UE =u,G; = 5]
to demonstrate that, in principle, the choice of the 6% for the Bernstein polynomial can
yield virtually any conceivable shape of MTRs. In reality, many more shapes are possible,

but we simply show an arbitrarily chosen selection here.

Next, we eliminate all MTRs that do not satisfy Restrictions 1 to 3:

* Restriction 1: All values of ]E[Y{(G)HIIE = u,G| and IE[Y(])(G)|UIE = u, G| are on the
support of Y;, that is between 0 and 20. MTRs that in part or completely fall outside
that range are discarded.

* Restriction 2: Averaged over the type-specific UF range, the resulting MTRs repro-
duce the type-specific outcome means E[Y}(G)|AT], E[Y}(G)|C], E[Y?(G)|C], and
E[Y?(G)|NT]. This means that the average y of each curve over the appropriate range
of the x-axis must be equal to its respective potential outcome mean (the y-coordinates
from Figure 5). This also implies that they reproduce the LATEs for each G;.

* Restriction 3: Monotone treatment selection (see Manski, 1997): E[Y}(G)|UF = u]
does not increase in UF along every G; quintile. This assumption implies that, on aver-
age, individuals with a higher unobserved propensity to pursue more education (i.e.,
those with a lower UF) have the same or higher recall ability, given more education,
than individuals with a lower propensity. This extrapolates our finding from Figure 5
that always-takers have higher recall ability than treated compliers to the whole unit
interval of UF. We do not impose a comparable restriction on ]E[Yé(G) \UE = u, G
since the pattern in Figure 5 is not as clear here.

Panel (b) of Figure 6 shows how Restrictions 3 is applied to MTRs that remain after
implementing Restriction 1 (y-values between 0 and 20) and 2. The most compelling
feature of Restriction 2 is that it introduces a completely data-driven selection of admissible
MTRs by forcing them to reproduce outcome means over a specific UF range. Restriction
3 then picks those that are monotonically decreasing over the entire unit interval (blue).
We proceed by using all viable generated MTRs, that is, E[Y?(G)|UF = u,G; = 1] to
E[Y}(G)|UF = u,G; = 5], to compute the respective MTEs, and retain only those that
satisfy Restrictions 4 and 5.
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Figure 6: Stylized representation of the constrained optimization of MTE curves

Notes: This figure shows exemplarily the constrained optimization of the MTE curves to match reduced-form evidence and further
restrictions. Panel (a) displays an arbitrarily large set of MTR curves (that have the same, highly flexible parametric structure: Bernstein
polynomial curves of degree n = 5) for Y! without additional restrictions. Red lines indicate MTR curves incompatible with the support
of our dependent variable (recall score, ranging from 0 to 20). Blue lines indicate remaining curves that lie completely on the support.
Panel (b) adds two additional restrictions: Restriction 2 restricts the curve to reproduce the mean recall scores for always-takers, treated
compliers, untreated compliers, and never-takers (we term this “reduced-form evidence”). We discard all curves whose average over
the type-specific UF interval does not match the reduced-form evidence. Restriction 3 discards all MTRs for Y! with a positive slope at
any point on the unit interval. Panel (c) shows the final MTE curves that minimize and maximize the interaction effect after Restrictions
4 and 5 are applied. Note that these are stylized graphs based on simulated data, not data from our empirical setting, in order to

properly illustrate each incremental step.
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* Restriction 4: No selection into losses: The MTE E[Y}(G)|UF = u,G; = g] —
E[Y?(G)|UF = u, G; = g] is not allowed to increase in UF. Suppose the treatment is a
choice and the outcome is beneficial (or correlates with such a variable). This is likely
in our setting with education as treatment and cognition as outcome. In that case, we
may expect selection into gains (MTEs decrease in UZE )- The literature on the effect
of education on earnings and cognitive skills documents overwhelming empirical
evidence of selection into gains (Carneiro et al., 2011; Nybom, 2017; Kamhofer et al.,
2019; Westphal et al., 2022).11 Note that we allow our MTEs to exhibit no essential
heterogeneity (i.e., horizontal MTEs, a setting in which a 2SLS estimation of G x E is
non-problematic). In Appendix H, we provide suggestive evidence that selection into

losses is unlikely in our setting.

* Restriction 5: Additive Separability of G; and the error term. By specifying linear
regression models such as the workhorse model in Eq. (1), this assumption—without
justifying it explicitly—is made throughout almost all applied econometric regres-
sion analyses, also in the 2SLS estimations we ran before. In the MTE world, this
implies that the slope of E[Y}(G)|UF = u,G; = g], E[Y?(G)|UF = u,G; = g|, and
E[Y}G)|UF = u,G; = g] — E[Y?(G)|UF = u, G; = g] does not depend on G;, mean-
ing that MTRs and MTEs for different values of G ar parallel. While possibly a strong
assumption, the ordered and parallel-running treated linear potential outcomes with
E; = 1 of Figure 5 suggest that it can be reasonable. For the untreated outcomes with
E; = 0, in contrast, the picture is less clear. However, the points may still fit curves
with the same slope between different values of G; if we allow for nonlinearities along

UF (such that MTRs are increasing until UF = 0.9 and decreasing thereafter).

We consider all MTEs that result from Restrictions 1 to 5. Among these, we keep the two
that maximize the area between the blue and the red line over the interval [0.55, 0.85], and
the two that minimize this area. This is visualized in Panel (c) of Figure 6. These are the

resulting MTRs and MTEs, from which we derive the bounds on the interaction effect.

More formally, we maximize and minimize our target parameter

BoxE(0.55,0.85) :=

1 /085

51 | [ED(O) [UF = G =5] ~E[Y(G)|Uf = u, Gi =5

—(IE[Y}(GMu}f:u,Gi:l}—IE[Y?(G){ulffzu,Gi:l})]du ®)

This does not mean that all MTE applications find selection into gains. In the context of childcare,
Cornelissen et al. (2018) find evidence of selection into losses.
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over the choice of the parameters 9{? of the Bernstein polynomials and subject to Restric-
tions 1 to 5. In total, there are 60 parameters: 6 times 2 (treated and untreated cases) times
5 (different values of G;). Estimating the bounds (i.e., choosing the 60 parameters) involves
solving a linear programming problem where constraints on the Bernstein polynomial
shapes can be represented as constraints on the parameters 6 (Rose and Shem-Tov, 2021).
The result is a linearized gene-environment interaction effect on the UF-range that is
always covered with compliers from every quintile. The denominator ensures a normal-
ization of the effect to a one-unit increase in G;. We optimize the interaction effect of the
difference between the first and fifth quintile as the natural choice covering the entire PGI
distribution. In Section 5.6, we report robustness checks to show this choice is not crucial.

We make the problem finite and evaluate u at 20 equidistant grid points (as Rose and Shem-
Tov, 2021). Increasing the number of grid points does not affect our results significantly

(but increases computation time substantially).

5.4 Results

Our main results are visualized in Figure 7. Each panel compares the bounded marginal
treatment effects from the first PGI quintile (in red) to the remaining four (in blue). The
MTE curves that produce the minimum possible interaction effect are the dashed curves,
and the solid curves are MTEs that produce the maximum. Recall that we set up the linear
programming approach to optimize the G x E effect in the interval Uf € [0.55,0, 85]. This
is because the compliers from all quintiles are located in this range. In this optimization
area, the bounds almost coincide, suggesting that the effects are practically point-identified.
This tightness inside the optimization area indicates that the reduced-form evidence (G;-
specific averages for never-takers, always-takers, and compliers) in combination with a
highly flexible polynomial and some additional structure (selection into gains, monotone
treatment selection for E; = 1, and additive separability) almost allow for a perfect
interpolation of G-specific LATEs to the MTE. Note that the tight bounds outside the
optimization area are instead a coincidence. The MTEs could look different in this region if
the interaction effect were optimized over the whole unit interval. Hence, we only interpret
MTE curves and their averages in this region. In Section 5.6, we show that our results
are robust to variations of this range. Generally, the differences between the solid MTE
curves for quintiles 2—4 and the reference category produce an estimate of the maximal
gene-environment interaction effect. The difference between the blue and red dashed
curves in each panel yields an estimate of the minimum interaction effect. For example,
in the top panel, the area between the blue and red curves indicates how the effect of
education on recall changes in the population when G; “moves” from the first to the second

quintile.
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The results have the same sign as our 2S5LS estimates. The interaction effect is positive for
each quintile comparison. This suggests that individuals with a higher PGI for education
benefit more from an additional year of education due to the compulsory schooling reform
in terms of their cognition later in life. Our approach also allows us to capture possible
nonlinearities in the interaction effect across the PGI. Indeed, the estimated magnitude
of the interaction differs across comparisons. Not surprisingly, the highest quintile has
the largest interaction effect. However, the size of the interaction for the second quintile is

substantial. Those in the third and fourth quintiles have the smallest effects.

We present estimates of the nonlinear interaction effects in Panel A of Table 4. While the
previously discussed 2SLS results from Table 2 are reported in column (1) as a benchmark,
columns (2) and (3) present the bounds of the marginal treatment effects from Figure 7
aggregated over the UF range from 0.55 to 0.85. As in Table 2, the effect on E; in the first
row indicates the baseline effect in the bottom quintile. The direct effects on G; in the
subsequent rows are not of immediate interest, but we present them for completeness.
Our focus is on the interaction effects, which are again relative to the reference category,
the bottom quintile. In addition, we present the linearized interaction effect from the
quintile coefficients (Panel B, see Eq. 8) that is our main measure of the gene-environment
interaction effect.!> This measure is simply the slope of a line through the interaction
effect estimates of the lowest and highest quintiles and can be thought of as the average
interaction effect standardized to a one-quintile change.!® This allows for a comparison of
interaction effects from 2SLS and MTE in one number to infer whether unobserved effect
heterogeneity and different proportions of compliers in G; — which we fix by estimating
marginal treatment effects — affected the 2SLS coefficients.

Overall, four features characterize our results. First, the MTE method yields informative
and narrow upper and lower bounds of the interaction MTE, which almost point-identify
the effect. Second, even the lower-bound MTE results indicate a relevant interaction effect
that is substantially larger than 2SLS estimates. The linearized lower bound is about 4.7
times larger than the linearized 2SLS coefficient. While we could not detect significant
gene-environment interaction effects with 2SLS, MTE estimation suggests statistically
significant effects at the 5 percent level. However, note that the most important difference
is the effect sizes and not the statistical significance. The significance level is stricter than
necessary because it is based on a two-sided test, even though we are only interested
in estimating the true MTE, not in exploring the full range of possible values that it
could take. Imbens and Manski (2004) suggests that a one-sided test is sufficient and

would lead all interaction coefficients except for (E; x G; = 2) to shift one significance

12The linear slope is calculated as ( ﬁé 1= ‘B{ 1)/4. The interaction coefficient for the bottom quintile, B{ 17
is zero since this quintile serves as the reference category. '

I3Note that this measure is differs from the linear interaction coefficients in Table 2, Panel C, where we
present interactions with the standardized PGI as a continuous variable, which is conceptually different.
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Figure 7: Quintile comparisons of the interaction effect

Notes: This figure shows the four comparisons of gene-environment interactions from our bounding approach
using data from ELSA waves 1-6 and our main sample selection, as outlined in Chapter 2.2. For every
PGI quintile, we estimate bounds: maxima (solid lines) and minima (dashed lines) at which the interaction
effect is maximized /minimized. The bounds for quintiles 2-5 (in blue) are compared to those of the bottom
quintile (in red), our reference category, yielding four comparisons. The smallest possible gene-environment
interaction is the difference between the blue and red dashed curves over U}E € [0.55,0,85]; the largest
possible interaction effect is calculated as the difference between blue and red solid curves over this interval.
The thick part of the curves indicates the size of the complier share and its location on the UF scale, both of
which differ by PGI quintile.
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Table 4: Estimates of the G x E interaction

Dependent variable — total recall score

2SLS MTEin MTEmax
1 2 ©)
Panel A: nonlinear G x E effect with G; as quintiles
E; —0.021 (0.449) 0.121 (0.450) 0.121 (0.450)
G =1 reference category reference category reference category
G =2 0.239 (0.397) —0.415 (0.463) —0.415 (0.441)
G =3 0.524 (0.451) —0.576 (0.607) —0.579 (0.579)
G =4 0.784 (0.448)  —0.249 (0.479) —0.252 (0.547)
G, =5 0.871 (0.591) 0.095 (0.822) 0.078 (0.840)
E; x (G,‘ = 1) reference category reference category reference category
Ei x (G =2) 0314  (0.497) 1.308  (0.582)* 1342 (0.766)*
E; x (G; =3) 0.091 (0.552) 1.377 (0.666)** 1.418 (0.852)*
E; x (G; =4) 0.049 (0.577) 1.012 (0.637) 1.033 (0.771)
E; x (G; =5) 0.394 (0.698) 1.851 (0.810)** 1.883 (0.912)**
Panel B: linearized G; X E; effect from quintile coefficients
E; X G; 0.098 (0.174) 0.463 (0.203)** 0.471 (0.228)**
Controls Yes Yes Yes
Observations 11,027 11,027 11,027

Notes: This table presents 2SLS and MTE estimates of the effect of staying in school until at least age 15 (E;), an
education PGI (G;), and their gene-environment interaction (G x E) on recall later in life using data from ELSA
waves 1-6 and our main sample selection, as outlined in Chapter 2.2. Panel A shows estimates for which we
use quintiles of the PGI to estimate possible nonlinear effects across G;. Estimates that include G; are computed
relative to the reference category, the bottom quintile. Panel B shows a linearized slope of a line through the
coefficients for G = 1 and G = 5 from Panel A. 2SLS estimates from Table 2 are included for reference in Column
(1). The MTE estimates in column (2) refer to the minimal effects where the underlying optimization minimizes the
linearized interaction effect. Estimates in column (3) are the maximal effects estimated accordingly. The controls
in each case include a linear cohort trend, its interaction with the instrument, gender, survey wave fixed effects,
parental education, the first ten principal components of the genetic data, and their interactions with the instrument.
Results in different panels are obtained from separate regressions. Standard errors clustered at the individual
level are shown in parentheses. For MTE bounds, standard errors are bootstrapped with 100 repetitions. *p < 0.1,
*p < 0.05,and **p < 0.01.

level (i.e., gain one star). The MTE standard errors are only slightly larger than those
of the 2SLS. This is because our MTE estimation is only slightly more data demanding
than a pure 2SLS estimation, our target parameter does not rely on extrapolation to
non-complying groups, and we additionally impose the outlined restrictions that reduce
sampling variation of the MTE relative to 2SL.S.1* Third, our estimates suggest that the
gene-environment interaction is more substantial for individuals with higher PGI, while
25LS estimates suggest a zero or small and statistically insignificant interaction effect. On
average, “moving” to a higher PGI quintile leads to an additional increase of 0.46-0.47
words in the impact of compulsory education on recall due to the education reform. This

tinding reveals substantial heterogeneity and suggests a high complementarity between

14The method of Mogstad and Torgovitsky (2018) only requires estimating twice the number of parameters
compared to 25LS (see Eq. 14) and without restricting the sample. The method does not extrapolate to non-
complying individuals (which could inflate the standard errors), because we report MTE-based estimates for
an UF interval that is only covered by compliers in every G quintile.
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education and “nature” as measured by the PGI. Individuals with a higher PGI have higher
returns to schooling in terms of cognitive abilities later in life. This result is independent
of observable and unobservable factors, both of which we can fix by estimating marginal
treatment effects. Fourth, the interaction effect size does not appear linear along the PGI,
as indicated by the visual differences in the interaction effects between each panel in
Figure 7. The MTE results suggest that individuals in the highest quintile experience a
large additional increase in recall of between 1.85 and 1.88 words relative to those in the
tirst quintile. The increases for individuals in the fourth quintile may not be statistically
different from the interaction for individuals in the lowest quintile, although the point
estimates are also positive and substantial.

To put our results into perspective, they suggest that individuals in the lowest quintile of
the education PGI do not experience increased memory later in life. However, compared
to them, the additional education increases memory for those in the highest quintile by
about half a standard deviation (i.e., 50% of 3.37). Individuals in between experience
lower benefits from schooling than those in the top quintile. The average linearized
increase per quintile for quintiles 2-5 is 13.6 percent of a standard deviation. We also
calculate MTE estimates of the total effect of E; on Y;, i.e., without interacting with G;.
The results are reported in Table B.4. The lower-bound MTE estimate is small, positive,
and not statistically significant. The upper bound suggest a total effect of 1.64 words, or,
again, half of a standard deviation. Conditional on the standard error of the linearized
E; x G; effect (0.203) and detecting a significant effect, we have a “minimal significant
effect size” of 1.96 x 0.203 = 0.398.1> This effect is 11.8 percent of the standard deviation
of the unconditional recall error. This shows that our statistical power is too low to detect
minor interaction effects. For example, it would be difficult to detect a significant 25LS
interaction given its small point estimate. Nonetheless, Appendix G documents that our
power suffices to detect the average gradient along unobserved heterogeneity as found in
the MTE literature.

5.5 Discussion

How do our results relate to the previous literature? To begin with, we compare our
results to studies that estimate the effects of schooling on cognition measures without

considering gene-environment interactions. Related studies find relatively large effects of

15This minimal significant effect size differs from the minimal detectable effect size for power calculations
because we condition on the test result. The minimal detectable effect size is typically defined as the minimal
effect detected as significant at the 5 percent level in 80 percent of all cases. This measure, however, cannot
be computed without further assumptions.

16A comparison between the interquintile heterogeneity along the PGI in our study and the quantiles of
the unobserved (MTE) heterogeneity is appropriate because (i) this heterogeneity is supposed to correlate
highly (as uncontrolled genes are supposed to be an important component of the unobserved heterogeneity)
and (ii) it is easy to transfer the MTE heterogeneity (reported along quantiles) to a measure along quintiles.
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schooling on recall ability. Our maximum MTE estimate (without interactions), as well
as the estimated interaction effect comparing individuals at the lowest and highest ends
of the education PGI distribution, are within the range of main effects reported in this
literature (see the summary of our results above): Using the same setting as in this paper,
Banks and Mazzonna (2012) find increases of about half a standard deviation in old-age
memory from the additional year of schooling induced by the 1947 UK reform. Gorman
(2023) finds increases of one-third to half a standard deviation in memory from the 1972
reform, and Glymour et al. (2008) report about a third of a standard deviation for U.S.
compulsory schooling increases. Carvalho (2025), among other things, estimates the effect
of the 1972 education reform on fluid intelligence, finding no effect. However, his outcome
— answers to several reasoning questions — captures a different aspect of fluid intelligence

related to problem-solving, while our outcome measures episodic memory.

Part of the effect of schooling on improved old-age cognitive abilities could arise through
higher earnings. However, while Harmon and Walker (1995) and Oreopoulos (2006) find
substantial effects of schooling on wages from the 1947 reform, Devereux and Hart (2010)
uncover that the impact on earnings is considerably smaller. Taken together, findings in
the literature imply that education could have a stronger influence on cognition than on
wages. Banks and Mazzonna (2012) discuss channels that include and extend beyond
income. They suggest that the effect of education on cognition could also come about
via access to more cognitively demanding occupations, enabling greater engagement in
cognitively stimulating activities; potentially increased social and cultural participation,
or greater productive efficiency in maintaining cognitive health. They rule out effects
via physical health improvements and mortality, and note that benefits likely emerged
among lower-educated individuals due to diminishing marginal returns to school years

and possibly the protective effect of delayed entry into the labor force.

To our knowledge, we are the first to estimate gene-environment interactions on old-age
memory. Nevertheless, it is worthwhile to compare interactions of education and genetic
markers on different outcomes found in related studies, especially income. Using the
1972 UK increase in the school-leaving age Barcellos et al. (2021) estimate average wage
increases of 6-7% and interaction effects of 2% additional gains per standard deviation
of an education PGI. When dividing the PGI into terciles, they find no wage effects for
individuals with low PGI, and increases of 6-8% for those in the highest PGI tercile.
Ahlskog et al. (2024) show that a Swedish schooling reform directly benefited earnings
of women with lower education PGI, finding interaction effects of 12% of the average
reform effect — however, only for women from wealthy families. Our gene-environment
interaction estimates for cognition are larger than those for income, which fits the general
notion that effects of education on cognition are larger than wage effects. In a recent
addition, Barcellos et al. (2025) estimate a large G x E interaction for an Alzheimer’s

diagnosis. They show that schooling is especially beneficial for people with higher genetic
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risk, reducing their likelihood of an Alzheimer’s diagnosis by at least 40% of the pre-reform

average.

5.6 Robustness

We perform several robustness checks and report our main measure, the linearized MTE
bound estimates, in Table 5. As a baseline for reference, we provide our main result
from Table 4. First, we estimate the interaction over alternative UF ranges, in particular
UF € [0.6,0.8] and UF € [0.5,0.9]. While the main range UF € [0.55,0.85] covers most
compliers from all quintiles well, we show that this choice is not critical to our main results
(see Panel B). Both over a wider and a narrower UZE range, the distance between minimum
and maximum bounds only marginally varies and remains statistically significant at the
5% level on a two-sided test. We do not go beyond UF € [0.5,0.9] since the never-takers
are predominantly located to the right of UF = 0.9. Second, we show robustness checks for
different sample compositions. Our dataset consists of repeated cross-sections (waves) of
ELSA and we control for wave fixed effects. Nevertheless, some individuals are observed
only once, while most are observed several times. We include a robustness check in which
we use only the most recent observation of each individual. This reduces the number of
observations (from 11,027 to 3,009) but not the number of individuals in the analysis. Both
the upper and lower bound estimates are slightly larger, as are standard errors due to
the lower number of observations. Both estimates are statistically significant at the 10%
level on the two-sided test we are utilizing. To further demonstrate that the composition
of our sample does not significantly alter our results, we include estimates when also
considering individuals under the age of 65. The minimum MTE estimate is smaller than
our main result, but the maximum is remains similar to our main specification. The choice
of the appropriate polynomial to control for cohort trends is not obvious. We demonstrate
how the results change when quadratic cohort trends are used instead of linear ones, or
when cohort trends are allowed to vary linearly across quintiles of the PGI. Doing so
increases flexibility. These changes only marginally affect the possible range of effects, as
the estimates are similar to those in our main result. However, standard errors increase,
especially when interacting cohort trends with G;. With the latter, the minimum and
maximum estimates both increase slightly. With squared trends, however, the minimum
decreases and the maximum increases somewhat. Next, we show that controlling for
principal components of the genetic data — while being sensible and an established norm
in the literature — does not drive our main result. Removing them and their interactions
with the instrument as control variables leads to slightly lower estimates for both bounds.
Next, we remove never-takers from the analysis (see Section 5.2 for a discussion of never-
takers). Their presence helps to tighten the bounds. However, even without them, the

minimum and maximum MTEs are informative. The interaction effect’s lower and upper
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bounds are still positive, although the lower bound may not be statistically different
from zero and the upper bound is larger than in our main result. This is to be expected,
since never-takers have lower expected outcomes. Not including them in the analysis
means that the MTE bounds do not have to reproduce these lower means. As a result,
the resulting MTE curves will look different. We visualize the quintile comparisons when
computing interaction effects without never-takers in Figure 1.3 in the Appendix. Next, we
consider the delayed recall score as an alternative outcome variable. This measure counts
the number of correctly recalled words (out of ten) five minutes after they are read to
participants in studies like ELSA. Since delayed recall is a more difficult task than recalling
the words immediately — the second component of our main outcome, total recall — the
sample mean for delayed recall is 4.15, less than half the total recall mean. As expected,
the estimated MTE effect sizes are much smaller, even though the lower bound is not
statistically significant. Furthermore, we estimate our main result, but calculate standard
errors with double the number of bootstrap repetitions (200). The standard errors barely
change.

Table 5: Robustness

Dependent variable — total recall score

Linearized G x E effect MTEin MTEmax
D 2)

Baseline (main result, Table 4) 0.463 (0.203)** 0.471 (0.228)**
LliE € [0.6,0.8] 0.461 (0.203)** 0.466 (0.232)**
UiE € [0.5,0.9] 0.418 (0.201)** 0.507 (0.217)**
One observation per individual 0.480 (0.248)* 0.496 (0.277)*
Keeping individuals below age 65 0.355 (0.206)* 0.482 (0.201)**
Squared cohort trends 0.444 (0.210)** 0.512 (0.234)**
Interaction of G; and cohort trends 0.483 (0.281)* 0.514 (0.277)*
No principal components 0.390 (0.201)* 0.444 (0.238)*
No never-takers 0.203 (0.253) 0.861 (0.243)***
Different outcome: delayed recall 0.115 (0.116) 0.353 (0.118)***
200 bootstrap repetitions 0.463 (0.219)** 0.471 (0.224)**

Notes: This table presents robustness checks for the linearized gene-environment estimates (our main
result) using data from ELSA waves 1-6 and our main sample selection, as outlined in Chapter 2.2.
For reference, we provide our main result from Table 4. Robustness checks include calculating our
main estimate (Eq. 8) over larger ranges of UF, using only the most recent panel observation of each
individual, relaxing the age restriction by keeping individuals below age 65, adding squared cohort
trends, interacting cohort trends with G;, excluding principal components (and their interaction
with the instrument) from the control variables, excluding never-takers, and using the delayed recall
score (see Section 2.2) as an alternative outcome variable. Unless otherwise specified, standard
errors are bootstrapped with 100 repetitions. *p < 0.1, **p < 0.05, and ***p < 0.01.

Furthermore, we show robustness checks of our linearized 2SLS measure in Table B.5.
Given the sample size, we are somewhat limited in how flexibly we can estimate the 2SLS
model. Nevertheless, we show robustness checks in which we add flexibility. First, we
additionally interact cohort trends and the interaction of cohort trends and the instrument
with G; to allow trends to vary by PGI quintile. Doing so increases the linearized 2SLS
coefficient of the G x E interaction marginally and increases the standard error. Second, we
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estimate a fully interacted model in which the controls are the levels and all combinations
of interactions between cohort trends, the instrument, PGI quintiles, and the remaining
previous controls (gender, principal components of genetic data, parental education, and
survey wave fixed effects). The linearized estimate of this flexible model is somewhat closer
to zero and has larger standard errors, than our main result. Additionally, we estimate the
25LS model with lower bandwidths of 8 and 5 years, respectively. The point estimate of the
interaction changes marginally and standard errors increase as the bandwidth decreases.

Finally, we show the robustness of our estimation method for the underlying optimization
of the interaction effect (see Eq. 8). In our main specification, we maximize/minimize the
difference between the first and the fifth quintile. Here, we additionally estimate linearized
effects of the final interaction effect when the optimization maximizes/minimizes the
difference between the first and each of the other quintiles. We visualize the result in
Figure J.1 in the Appendix. The results show that optimizing for different comparisons
does not produce substantial changes in the final interaction effect, especially not in the
crucial UF range where we estimate our MTEs. The choice of quintile comparisons for
the underlying optimization is not critical. The reason is that the MTRs must reproduce
the data in form of group means, and given our shape constraints, the range of possible

meaningful candidate MTRs that produce maximum and minimum MTEs is limited.

6 Conclusion

The growing gene-environment literature aims to estimate interactions between genetic
endowments and environmental exposure (e.g., behavior or choice variables like educa-
tion) in their effect on an outcome of interest. The goal is to assess whether the effect of
the environment varies by genetic endowment (or vice versa) while all else is equal. Since
environmental variables are often endogenous, a popular choice is using instruments or
natural experiments as a source of exogenous variation. This usually involves estimating a
two-stage least squares model. Estimating gene-environment interactions by two-stage
least squares regression identifies gene-specific effects of the environment. However,
they may not retain the desired interpretation as interaction effects if (1) the first stage
is heterogeneous across different values of G; and (2) the empirical setting entails essen-
tial heterogeneity in E; (the unobserved heterogeneities for the outcome and treatment
correlate). If both conditions hold, then two properties differ between gene-specific local
average treatment effects: the genetic endowment and the unobserved effect heterogeneity.
While the former is precisely what researchers want to isolate (the interaction), 2SLS cannot
account for the latter. Thus, 25LS estimates may not reflect complementarity between
genes and the environment. We suggest solving this problem by estimating marginal
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treatment effects. MTEs allow for the computation of G x E estimates while accounting
for unobserved heterogeneity.

While gene-environment interactions are a natural choice to illustrate this problem, since
the central parameter is the instrumented interaction estimate, it theoretically applies to
all interactions estimated by 2SLS. The two conditions that generate it, non-overlapping
complier groups due to variations in the interaction variable and unobserved effect hetero-
geneity correlated with treatment propensity, could be present in other real-world scenarios
involving choice variables. Nevertheless, there are likely also many settings where they
are not present or the 25LS comparisons are inconsequential. For example, Barcellos et al.
(2021) find no differences between 2SLS and linear MTE estimates of their gene-education
interaction. Moreover, in many applications, heterogeneous first stages by the interaction
variable are unlikely and studies that estimate only reduced form (gene-environment)
interaction effects avoid wrong 2SLS comparisons all together.

Our empirical study examines the long-term effects of education and genetic predisposition
for education, as well as their interaction, on memory, our measure of cognition, using
data from the English Longitudinal Study of Ageing. Word recall is frequently used as
a measure of cognitive functioning and predicts cognitive decline and impairment. To
identify the effect of education, we use a compulsory schooling reform from 1947 that
increased the minimum school-leaving age in the UK to 15. Our baseline 2SLS estimates
document a zero effect of education on recalled words for individuals in the lowest PGI
quintile. Effects for higher quintiles are positive, but we lack the precision to estimate
them precisely with 2S5LS. We find evidence that both conditions for 2SLS to make the
wrong comparisons apply in our setting. We see a strong gradient in the first stage across
the quintiles of the education PGI and essential heterogeneity is present, more precisely,
selection into gains. This is well documented for educational decisions. We estimate
marginal treatment effects using the partial identification approach from Mogstad et al.
(2018). Building on reduced—form evidence, we generate minimal and maximal G x E
effects consistent with the data. We add further benign restrictions (such as additive
separability and negative MTE slopes that imply selection into gains) to gain precision and
tighten the bounds. The resulting bounds almost point-identify the interaction effect.

Our main finding is that, holding unobserved heterogeneity across G; fixed, even the lower
bound G x E effect is 4.7 times larger than the corresponding 2SLS estimate. In absolute
terms, the gene-environment complementarity is substantial: on average, the effect of
education on recalled words increases by 0.46-0.47 with each PGI quintile. This means
that the MTE results imply higher returns to education for cognitive functioning later in
life for those with a higher PGI. The complementarity between education and genetic

predisposition that widens existing gaps in returns to education is larger than initially
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estimated with two-stage least squares. Not accounting for essential heterogeneity limits
the usefulness of the 2SLS estimates.
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A Additional sample information

Table A.1: Descriptive statistics (extended)

Main sample By E;
Mean (SD) E;=1 E;=0 Difference (SE)
Outcome Y;
Recall score 9.67 (3.37) 10.11 8.08 —2.03 (0.07)***
Treatment E;
Left school > 15 0.78 (0.41) 1.00 0.00 —1.00 (0.00)
Polygenic index G;
1st PGI quintile 0.20 (0.40) 0.18 0.25 0.07 (0.01)***
2nd PGI quintile 0.19 (0.40) 0.19 0.21 0.02 (0.01)**
3rd PGI quintile 0.20 (0.40) 0.21 0.19 —0.02 (0.01)**
4th PGI quintile 0.21 (0.41) 0.21 020 —0.01 (0.01)
5th PGI quintile 0.20 (0.40) 0.22 0.15 —0.07 (0.01)***
Instrument Z;
Born 1933 or later 0.66 (0.47) 0.82 0.13  —0.69 (0.01)***
Controls
Female 0.52 (0.50) 0.52 050 —0.02 (0.01)**
Birth year 1934.89 (5.00) 1936.29 1929.92 —6.37 (0.10)***
Parental education:
Missing 0.25 (0.43) 0.20 041 021 (0.01)***
Both left school < 14 0.57 (0.49) 0.58 055 —0.03 (0.01)**
At least one left school > 15 0.18 (0.39) 0.22 0.04 —0.18 (0.01)***
Principal components (standardized):
-1- 0.00 (1.00) 0.00 —0.01 —0.02 (0.02)
-2- 0.00 (1.00) 0.01 —0.02 —0.03 (0.02)
-3- 0.00 (1.00) 0.01 —0.04 —0.05 (0.02)**
-4 0.00 (1.00) —0.01 0.02 0.03 (0.02)
-5- 0.00 (1.00) 0.00 0.00 0.00 (0.02)
-6- 0.00 (1.00) 0.02 —0.07 —0.09 (0.02)***
-7- 0.00 (1.00) 0.01 —0.03 —0.04 (0.02)*
-8- 0.00 (1.00) 0.00 0.02 0.02 (0.02)
-9- 0.00 (1.00) 0.01 —0.02 —0.02 (0.02)
-10- 0.00 (1.00) 0.01 —0.02 —0.02 (0.02)
Wave:
-1- 0.15 (0.36) 0.12 0.27 0.15 (0.01)***
-2- 0.18 (0.38) 0.16 0.26 0.10 (0.01)***
-3- 0.17 (0.37) 0.16 0.19 0.03 (0.01)***
-4 - 0.19 (0.39) 0.20 0.15 —0.06 (0.01)***
-5- 0.17 (0.37) 0.19 0.09 —0.10 (0.01)***
—6- 0.14 (0.35) 0.17 0.04 —0.13 (0.01)***
Observations 11,027 8,590 2,437

Notes: This table presents extended descriptive statistics using data from ELSA waves 1-6 and our main sample selection,
as outlined in Chapter 2.2. Here, we also report the standardized first 10 principal components of the genetic data and
information on survey waves. The categories for parental education include: Missing information of at least one parent,
both parents left full-time education at age 14 or before or have no education, and at least one parent stayed in school
until age 15 or longer. We include the mean and standard deviation of the main sample as well as the means by E;, the
difference of means, and the standard errors of a t-test for equality of means. *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table A.2: Descriptive statistics by availability of genetic information

Full sample By availability of
genetic information
Mean (SD) Yes No Difference (SE)
Outcome Y;
Recall score 9.32 (3.50) 9.67 8.76 —0.91 (0.05)***
Treatment E;
Left school > 15 0.76 (0.43) 0.78 0.72 —0.06 (0.01)***
Instrument Z;
Born 1933 or later 0.65 (0.48) 0.66 0.62 —0.04 (0.01)***
Controls
Female 0.52 (0.50) 0.52 0.52 0.00 (0.01)
Birth year 1934.67 (5.10) 1934.89 1934.32 —0.57 (0.08)***
Parental education:
Missing 0.31 (0.46) 0.25 0.40 0.16 (0.01)***
Both left school < 14 0.53 (0.50) 0.57 045 —0.12 (0.01)***
At least one left school > 15 0.17 (0.37) 0.18 0.14 —0.04 (0.01)***
Wave:
-1- 0.19 (0.39) 0.15 0.24 0.09 (0.01)***
-2- 0.17 (0.38) 0.18 0.15 —0.03 (0.01)***
-3- 0.15 (0.36) 0.17 0.13 —0.04 (0.01)***
-4- 0.19 (0.39) 0.19 0.18 —0.01 (0.01)
-5- 0.16 (0.37) 0.17 0.16 —0.01 (0.01)
-6- 0.14 (0.34) 0.14 0.13 —0.01 (0.01)*
Observations 17,884 11,027 6,857

Notes: This table presents descriptive statistics by availability of genetic information in ELSA using data from waves 1-6
and different sample restrictions. “Full sample” includes all restrictions outlined in Chapter 2.2, except for the removal of
individuals without genetic information. In the second part of this table, we split this sample based on the availability of
genetic information. The sub-sample with genetic information corresponds to our main estimation sample. We display the
means and difference of means, as well as the standard errors of a t-test for equality of means between the two groups.
*p < 0.1, *p < 0.05,and ***p < 0.01.
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Table A.3: Descriptive statistics by PGI quintiles

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile

Outcome Y;
Recall score 8.98 9.47 9.69 9.84 10.31

Treatment E;

Left school > 15 0.72 0.76 0.80 0.78 0.84
Instrument Z;
Born 1933 or later 0.67 0.65 0.66 0.67 0.67
Controls
Female 0.54 0.51 0.53 0.50 0.50
Birth year 1934.87 1934.84 1935.05 1934.69 1934.98
Parental education:
Missing 0.27 0.26 0.22 0.23 0.25
Both left school < 14 0.62 0.57 0.59 0.62 0.47
At least one left school > 15 0.11 0.17 0.19 0.15 0.29
Wave:
-1- 0.16 0.15 0.14 0.16 0.15
-2- 0.19 0.18 0.17 0.19 0.17
-3- 0.17 0.17 0.17 0.17 0.17
-4 - 0.19 0.19 0.20 0.18 0.20
-5- 0.16 0.17 0.17 0.16 0.17
-6- 0.13 0.14 0.15 0.14 0.15
Observations 2,152 2,145 2,216 2,284 2,230

Notes: This table presents sample means by quintiles of the educational attainment PGI using data from ELSA waves 1-6 and our main
sample selection, as outlined in Chapter 2.2.
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B Additional regression results

Table B.1: The 1947 UK compulsory schooling reform
and panel attrition

DV: Dropped out of sample

Coefficient Standard error

) 2
Z; 0.001 (0.018)
Controls Cohort trends only
Observations 12,108

Notes: This table presents estimates of the effect of the 1947 UK compulsory
schooling reform (Z;) on a panel attrition indicator. The analysis uses data from
ELSA waves 1-6, our main sample selection, as outlined in Chapter 2.2, but we
fill up observations from the first wave an individual was observed until wave 6
to create the panel attrition indicator. Controls include a linear cohort trend and
its interaction with the instrument. Standard errors clustered at the individual
level shown are in parentheses. *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table B.2: The 1947 UK compulsory schooling reform and
providing genetic information to ELSA

DV: Provided DV: Left school at
genetic information 15 or later (E;)

1) (2)

Z; —0.01 (0.030) 0.479 (0.030)***
Provided genetic information 0.035 (0.023)
Provided genetic information xZ; —0.008 (0.025)
Controls Yes Yes
Observations 17,884 17,884

Notes: This table shows that our instrument, eligibility for the 1947 UK compulsory schooling reform,
did not affect the probability of providing genetic information to ELSA (column 1) and that the first
stage does not vary with the provision of genetic information to ELSA (column 2) using data from
ELSA waves 1-6 and the sample selection outlined in Chapter 2.2, except for the removal of individuals
without genetic information. Specifically, column 1 shows the estimates of a linear regression of the
instrument Z; on a dummy variable equal to one if a person provided genetic information to ELSA,
and column 2 shows the estimates of a linear regression of the environment (leaving school at age 15
or later) on the instrument Z;, being born in 1933 or later, the genetic information dummy, and the
interaction between the two. The controls in each case include a linear cohort trend, its interaction
with the instrument, gender, and survey wave fixed effects. Both regressions are estimated using
a larger sample from Table A.2 , where we apply all the sample restrictions outlined in Section 2.2,
except for removing individuals without genetic information. Standard errors in both regressions are
clustered at the individual level. *p < 0.1, **p < 0.05, and ***p < 0.01.
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Table B.3: Estimates of the first stages by PGI quintile

DV: Left school at 15 or later (E;)

Coefficient Standard error
1 2)

Zi x (G; =2) 0.534 (0.018)***
Z; x (G; = 3) 0.484 (0.018)***
Zi x (G; = 4) 0.426 (0.018)***
Z; x (G; = 5) 0.357 (0.018)***
Controls Yes
Observations 11,027

Notes: This table presents estimates of the effect of the 1947 UK compulsory schooling
reform (Z;) on attending school until at least age 15 (E;) by quintiles of the education
PGI using data from ELSA waves 1-6 and our main sample selection, as outlined in

Chapter 2.2. These effects are obtained from the coefficients 7'[{ A to né[ A of Eq. (4),
which correspond to the complier shares in the respective quintile. Standard errors
clustered at the individual level shown are in parentheses. The controls include a
linear cohort trend, its interaction with the instrument, gender, survey wave fixed
effects, parental education, the first ten principal components of the genetic data as
well as their interactions with the instrument. *p < 0.1, **p < 0.05, and ***p < 0.01.
The standard errors are seemingly the same here, but only due to rounding. They
differ at the fourth digit.
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Table B.4: MTE estimation without
interaction terms

DV: Total recall score

MTEnin MTEmax
1) (2)
E; 0.163 (0.464) 1.636 (0.620)***
Controls Yes Yes
Observations 11,027 11,027

Notes: This table shows MTE estimates of the total effect of E; on
recall, i.e., without interacting E; with the genetic endowment. The
analysis uses data from ELSA waves 1-6 and our main sample
selection, as outlined in Chapter 2.2. We use our method as de-
scribed in Chapter 5, but only construct two MTE curves, that maxi-
mize/minimize the total effect instead of two for each PGI quintile.
Controls include a linear cohort trend, its interaction with the in-
strument, gender, and survey wave fixed effects. Standard errors
in both regressions are bootstrapped with 100 repetitions. *p < 0.1,
**p < 0.05,and **p < 0.01.
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Table B.5: Robustness of the linearized 2SLS estimate

DV: Total recall score

Linearized G x E coefficient Standard error

1 2

Baseline (main result, Table 4) 0.098 (0.174)
Birth cohort interacted with G; 0.121 (0.425)
Fully interacted 0.044 (0.410)
Bandwidth 8 years 0.128 (0.191)
Bandwidth 5 years 0.121 (0.245)
Controls Yes

Observations 11,027

Notes: This table presents robustness checks of the 2SLS estimation using data from ELSA waves 1-6 and
our main sample selection, as outlined in Chapter 2.2. We only present our main 2SLS result, the linearized
G x E estimate, that represents a line through the G x E coefficients of the lowest and highest PGI quintile.
This is done to compare average effects easily across methods. For reference, we report the effect from our
main results. For “Birth cohort interacted with G;”, we add interactions between G; and cohort trend ¢ as
well as G; x t x Z; as controls on top of the baseline specification (Z; being the instrument). For the fully
interacted model, the controls include all baselines and interactions between ¢, G;, Z;, and X, where X is a
vector of controls that includes gender, the principal components of the genetic data, parental education
and survey wave fixed effects. Standard errors clustered at the individual level shown are in parentheses.
*p <0.1,*p <0.05 and ***p < 0.01.
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Figure B.1: First Stage and reduced form by G;

Notes: This figure shows a visualization of the first stage (upper panel) and the reduced form (lower panel) results of our regression
discontinuity design by quintiles of the education PGI G; using our main sample collapsed to cohort x G;-averages. Dots correspond to
Gi-specific sample means, lines are linear fits that are allowed to vary by Z;.
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Table B.6: Estimates corresponding to Figure B.1

Dependent variable:

Cohort average left Cohort average
school at 15 or later (E;)  word recall (Y;)
1 2
G =1 0.269 (0.032)*** 8.933 (0.205)***
G =2 0.415 (0.032)*** 9.231 (0.205)***
G =3 0.489 (0.032)*** 9.493 (0.205)***
G =4 0.503 (0.032)*** 9.786 (0.205)***
G =5 0.565 (0.032)*** 9.866 (0.205)***
Zi x (G =1) 0.667 (0.045)*** —0.284 (0.290)
Z;i x (G;=12) 0.533 (0.045)*** 0.054 (0.290)
Zi x (G; = 3) 0.472 (0.045)*** —0.105 (0.290)
Zi x (G; = 4) 0.430 (0.045)*** —0.222 (0.290)
Z; x (G; = 5) 0.399 (0.045)*** 0.244 (0.290)
t 0.007 (0.004)* 0.196 (0.024)***
tx Z; —0.005 (0.005) —0.039 (0.034)
Observations 100 100

Notes: This table presents estimates that correspond to averages and linear fits
visualized in Figure B.1. This analysis uses our main sample collapsed to cohort
x Gj-averages, yielding 100 observations (20 birth cohorts x 5 gene groups).
Columns (1) and (2) are OLS regression of the average proportion of the sample
who left school at 15 or above (E;) and average recall score (Y;), respectively,
on G;, interactions between G; and the instrument Z;, as well as a linear cohort
trend f and the interaction of this trend with Z;. We do not include a constant.
Therefore, coefficients of G; can be interpreted as sample means of the respective
outcome variable in each quintile of G; when Z; = 0, i.e. on the left side of the
cutoff. Interactions with Z are changes of these sample means for Z; =1, i.e. the
right side. The coefficients of t and t x Z; can be interpreted as the slope of the
linear cohort trend for Z; = 0 and its change for Z; = 1. *p < 0.1, **p < 0.05,
and ***p < 0.01.
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C Polygenic indices

The human genome has about 3 billion base pairs, the pairs of nucleic acids that make up
the DNA. However, any two people differ by only about 0.1 percent of the base pairs. Most
of these genetic differences are substitutions of a single base (adenine, thymine, cytosine,
or guanine) for another at a specific location in the genome, called ”single nucleotide
polymorphisms” (SNPs) that are common across the whole genome. These substitutions
result in different genetic variants (alleles) that vary among parts of the population.!”
For example, at a specific SNP location, the DNA sequence might have an adenine base
in some individuals, while others may have a thymine base at the same position. One
is (arbitrarily) chosen as the reference variant. Then, each SNP can be represented as a
count variable of occurrences of the reference variant at this location that can either be
0, 1 or 2, since there are two copies of each chromosome. Large research projects called
genome-wide association studies (GWAS) correlate each of the SNPs with a disease or trait,

e.g., diabetes, years of education, or smoking. This entails running one regression of type
Y; = B;Sij+ Xio + & )

for each of the SNPs, where Y] is the outcome of interest (in our case educational attainment)
of individual i, B; is the individual effect of each SNP j, S;; is the count variable of the
reference variant of SNP j with S;; € {0,1,2}, X; is a vector of controls that typically include
age, gender and principal components of the genetic data, which control for spurious
correlations of genetic variants and outcomes that are due to population structure.!® The
PGI is then calculated as a weighted sum of all ] SNPs that are relevant to the outcome?,

where the weights correspond to the ;’s obtained in the GWAS:

J
PGI; =Y B;Sij (10)
j=1

Polygenic scores for various traits or behaviors (personality, mental and physical health,
health behaviors, and more) have been calculated for the ELSA sample based on various
GWAS and are readily available.

7The generally agreed-upon threshold for a substitution to be regarded a SNP is common occurrence in
at least one percent of the population.

18For a more detailed description of principal components, see Chapter 2.2.

The discovery study the PGI we are using is based on, Lee et al. (2018), finds 1,271 SNPs that are
significantly correlated with educational attainment.
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D Simulation model

To visualize 2SLS being unable to disentangle interaction effects from shifts in complier
groups, as discussed in Section 4, we set up a simple simulation model. Assume the
following arbitrary parameterizations of the potential outcomes, where, for simplicity, we

leave out observable variables X;:

Y1) = 23+¢, YN0 =05+, Y1) =03+, Y20)=0+¢"
E; = 1{023+425G; —4Z; +3Z; x G; > — (e} — &%)}

Z;,G; = Bernoulli distributed with p = 0.5,

0 _

U = €9(G;) and ¢! = €}(G;) are error terms. Here, we make the simplifying

assumption that ¢}(1) = e} (0) = ¢! and €(1) = €?(0) = €Y. In this simulation — but not in

where ¢

the application later — they are assumed to follow a bivariate normal distribution with
the following parameters:

1

£\ onl(0) (2 o8]

&) 0)°\04 2
Setting ¢}(1) = €!(0) = ¢! and €(1) = €%(0) = €? does not affect the main line of
argumentation and is merely for a simple exposition. It restricts the gene-environment
effect to 1.5 for each individual and, thus, each complier type. Assuming four different
error terms allows for a different gene-environment interaction effect by complier type.
Our argument is not affected by that, and neither does our solution need this restriction,

nor do we make this assumption in the application in Sections 2 to 5.
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E Interpreting G X Z

Rearranging the Wald estimator demonstrates that the reduced-form effect is the product
of the structural (i.e., the second stage) and the first stage effects. This expression holds at
every conceivable value of G = g (which, for the sake of the argument, is assumed to be

continuous):

E(Y|Z=1G=¢)-E(Y|Z=0G=g) = E(Y'(G=g)-Y(GC=g)IC(G=g))
x]E(ﬂ[C(G:g)]) (11)

Conceptually, you can think of this equation as the following form: w(g) := u(g,v(g)) X
v(g), where we define the reduced form w(g) as a function of g. It is the product of u(-)
— the second stage — and v(g) — the first stage (if aggregated). The second stage varies in
G = g, the PGI at which the effect is assessed, and the specific complier group determined
by v(+), a complier-indicating function (if unaggregated).

Applying the product and chain rule to this simplified expression w(g) demonstrates that
marginally changing ¢ has three distinct effects (i.e., partial derivatives) on the reduced

form: (i) the partial direct derivative of w(-) with respect to the structural gene heterogene-

ity of the second stage (i.e., a's—é), holding v(g) fixed), (ii) the partial derivative of 1(g) with

respect to the (g-specific) complier groups (i.e. ;;T((?) holding g fixed), and (iii) the partial

derivative of ¢ with respect to the first stage ag—é) .
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Formally in the notation of Eq. (11), this reads:

a]E(Y|Z:1,G:g))—1E(Y|Z:O,G:g)
dg

IE(Y'(G=g) - Y'(G=g)|C(G=4y))
98

(i) Structural outcome interaction

xIE(IL[C(G = g)})

J/

IE(Y'(G=g) - Y)(G=g)|C(G=g))
IE(1[C(G = g)])

[ J/

(ii) Interference with essential heterogeneity

JE(1[C(G=g)]
X < 5 > xE(C(G=g))

<0 in our paper

ralE(]l (G =2g)])
og

+E(Y'(G=¢)-Y(G=g)|C(G=g)) x

[

(iii) First-stage gradient

The interaction between channels (i) and (ii) is the core of our paper. The focus on the
reduced-form adds a third channel, which blurs the structural outcome interaction we
want to identify. To see this clearly, assume there is no structural outcome interaction and
also no essential heterogeneity — so channels (i) and (ii) are switched off. Yet, the first stage
may exhibit a gradient. In this case, the reduced form interaction G x Z may still differ

from zero. It remains:

JE(Y[Z=1G=g)) ~E(Y|Z=0,G=g)
g

= E(Y!'(G=g)-Y(G=g)|c(G=g))

81E<IL[C(G = g)})

X ag

This demonstrates that even without any structural outcome interaction and essential
heterogeneity, the G x Z interaction may differ from zero. This is because the first stage
changes along G. While the G x Z may be informative about whether a policy Z has
heterogeneous effects along G (as measured by the sum of all three mechanisms), it is

uninformative about the structural outcome interaction (mechanism (i)).
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F Implications for other empirical applications

Of course, the described problem and solution are not restricted to gene-environment
interactions. Observed heterogeneity in treatment effects in general and the effect gradient
along one particular variable, in particular, are the focus of many applied papers. Consider

the following regression equation:
Y; = Bo + B1D; + BaXi + B3D; x X; + ¢, (12)

where Y; is the outcome, D; is the (endogenous) treatment indicator, and X; is an observ-
able variable. Without claiming that the problems with 2SLS apply here — because the
conditions for 2SLS to cause problems are not necessarily fulfilled — we briefly mention
some studies in the literature that are interested in how the effect of treatment D varies by
X.

The literature on effects of education D has been interested in how they vary by socio-
economic status X. For instance, early research on local average treatment effects of
education focused on identifying effect gradients by socio-economic status to provide
additional support for the plausibility of the IV estimates (Angrist and Krueger, 1991; Card,
1993). Relatedly, Brunello et al. (2017) want to identify the observed heterogeneity in the
returns to education explicitly. They distinguish between urban and rural areas, as well
as between individuals who grow up in households with many books versus those with
tew. They interpret their heterogeneous returns to compulsory schooling both structurally
and in terms of selection (via different marginal costs and returns of schooling for affected
individuals). Nonetheless, applying our method in this context could help differentiate

between the two explanations.

Relatedly, D could be the effect of children, Y labor supply, X household income: In their
landmark study, Angrist and Evans (1998) use the same-sex instrument to estimate whether
the effects of children on labor supply differ by household income (as economic theory
would predict). To assess the validity of this theory, one would need to hold the complier
population constant and compare the effects of children on labor supply between different
groups formed by household income. Given that Angrist and Evans (1998) show that the
first stage is increasing along the husband’s income (the more affluent the household, the

more the household can afford their same-sex preference), 2SLS might be problematic here.

Other examples relate to the study of origins of the socio-economic gradient in health
(Currie, 2009) and the literature on skill formation (Cunha and Heckman, 2007). These
are prominent examples of a research question where the interaction effect between the
environment in which individuals grow up (X) and a choice variable D is at the center of
interest. For instance, Conti et al. (2010) estimate the interaction between education and

measures (X) of early-life cognitive and non-cognitive skills, as well as health endowments
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(the dimensions of observed heterogeneity) on later-life health behavior using structural
methods (such as latent factor models that allow proxying unobservables and measurement
error). If one were to employ instrumental variables estimation for this research question,
it would be essential to consider differential responses to the instruments for all observed
heterogeneity dimensions.

To take a recent paper as another example of this literature, Agostinelli and Wiswall (2025),
estimate a latent factor model and specify an empirical model, in which they explore the
heterogeneity in the returns to parental investments concerning the endowment of the chil-
dren. If endowments and investments are more directly observed without measurement
error and if quasi-experimental instruments for parental investments exist, researchers
would employ instrumental variable methods. However, the problems outlined in this
paper would arise if there is a gradient in the first stage along children’s endowment and if,
for instance, parents have a higher propensity to invest more in children with high returns
to this investment.

Related to our research question, Houmark et al. (2024) estimates the technology of
skill formation using skills, genetic endowment of children and parents, and parental
investments, documenting that all factors are interrelated.

Heterogeneity between unobserved heterogeneity and covariates also appears to interfere
in the paper by Maestas et al. (2013). They estimate the effects of disability benefit receipt
on employment and report heterogeneous first-stage and IV regressions that vary by
observed characteristics. For the first stage, coefficients on the instrument and the intercept
vary substantially by covariates, suggesting that the instrument affects complier groups
with different unobserved characteristics. While interpreting the 2SLS coefficients as het-
erogeneous LATEs is (of course) appropriate (as they do), this suggests that generalizing
these LATEs beyond the instrument-specific complying population, as covariate-specific
average treatment effects or covariate-specific effects of a more lenient or stringent disabil-
ity receipt allowance reform, is likely inappropriate. This is especially important because
Maestas et al. (2013) detect essential heterogeneity: employment effects of disability receipt
are less negative for individuals with a higher unobserved severity.

Lastly, if researchers are interested in the effects of education by gender to gain better
insights into possible structural disadvantages for females, it would be preferable to com-
pare, for example, average treatment effects across genders than local average treatment
effects for two possibly different complier groups.

62



€9

G Effect sizes of essential heterogeneity in MTE applications

Table G.1: The gradient within essential heterogeneity of other studies

(€0 (@) (©) 4) (@) (6)
Linearized Standardized % of our
effect per Standard linearized MSE
TE = . -
Note M(U—Dp) quintile deviation effect size size
Study Outcome Treatment (Model/sample) p=0.1 p=09 2)) of outcome (%) (%)
71
o . Norm. sel. mod. 0.04 —0.02 0.015 0.4 0.03 37.5%
Nybom (2017) Lifetime earnings College ed. Local IV 0.08 01 0.005 04 0.0125 10.4%
. . Norm. sel. mod. 0.14 0 0.035 0.47 0.06 62%
Carneiro et al. (2011) Wage in 1991 College ed. Local IV 0.35 _015 01 047 021 175%
Math literacy Local IV 2.00 0.5 0.375 1 0.375 321.5%
Kambhofer et al. (2019) Reading speed College ed. Local IV 1.8 0.3 0.375 1 0.375 321.5%
Reading competence Local IV 2.5 0 0.625 1 0.625 520%
Cornelissen et al. (2018) School readiness Child care att. Linear MTE -0.1 0.22 0.08 0.082 0.975 813%
Kowalski (2023) ER visits HI coverage Linear MTE 0.47 -0.58 0.2625 2.63 0.1 83.3%
Ito et al. (2023) Electricity usage Dynamic pricing Local IV -750 100 2125 250 0.85 708.3%

Notes: Our (non-standardized) “minimal significant effect size” (MSE) with 95% (90%) confidence is 1.96 (1.64) times the standard error on the linearized interaction
reported in Table 4, i.e., 0.203. Hence, the MSE yields 0.4 (0.33). Our dependent variable (the recall score) has a standard deviation of 3.37, yielding a standardized MSE of
0.4/3.37 = 0.12. Note that this minimal significant effect size differs from the minimal detectable effect size for power calculations because we condition on the test result. The
minimal detectable effect size is typically defined as the minimal effect detected as significant at the 5 percent level in 80 percent of all cases. This measure, however, cannot be
computed without further assumptions. Our target parameter is the average difference in the effects of education on cognitive abilities between the fifth and the first quintile
(i.e., four quantiles). The MTE maps the impact of a treatment for every quintile of the unobserved heterogeneity in the treatment choice. We approximate the average effect

heterogeneity between quintiles of this unobserved heterogeneity by computing MTE(p=01) —MTE(Q9) compare the genetic hetergeneity to those of MTE studies (a preferct
approximation would require identification at infinity and computing the integral between 0 and 0.2 and 0.8 and 1 for the first and fifth quintile, respectively). The reported
values for MTE(p = 0.1) and MTE(p = 0.9) are approximated through eyeballing the corresponding MTE graphs. Nybom (2017) interprets the degree of heterogeneity
as low, justifying this finding with a low general heterogeneity in wages in Sweden. Further note that standard errors may be approximated, e.g., by averaging standard
errors between treatment and control samples. The reported standard deviation of Ito et al. (2023) is approximated based on the average pre-intervention daily electricity
consumption (the outcome measures hourly consumption during peak hours). Therefore, the reported SD may likely be a lower bound. See Mogstad and Torgovitsky (2024)
for more applications of the MTE. Norm. sel. mod. = Normal selection model (maximum likelihood based functional form assumption (joint normality). HI coverage =
Health insurance coverage. ER visits = Emergency room visits, College ed. = College education.



H Testing "no selection into losses” (non-positive MTE

slopes)

A critical constraint we apply in our linear programming approach is “no selection-into-
losses”, i.e., no MTEs that increase in Ug. To test this in our setting, we follow Imbens and
Rubin (1997) and use the instrument to compute mean outcomes for always-takers, treated
and untreated compliers, and never-takers. For simplicity, we test this condition globally
and do not distinguish between cells of G; (we show the complete G;-specific means in
Figure 5). We present the results in Table H.1. In Panel A, we focus on differences between
always-takers and treated compliers (Column 3) and untreated compliers and never-
takers (Column 6). The differences are informative about whether the treated outcome
E[Y!|Ug = u] and the untreated outcome E[Y?|Ur = u] — the difference of which is the

MTE - are heterogeneous in Uf.

Column (3) presents the mean recall difference between always-takers and treated com-
pliers. It shows a substantial and statistically significant heterogeneity: Always-takers
recall about 1.25 words more. Intuitively, this is unsurprising, as always-takers to a com-
pulsory schooling reform will, on average, have more years of education, will be more
likely to hold advanced degrees, or may be positively selected in terms of unobserved
characteristics (if we have selection into gains, which we want to argue). Furthermore,
this result shows that E[Y}|Ur = u] has a negative slope. Likewise, we do the same
with untreated compliers and never-takers. Here, the heterogeneity is less pronounced
and not statistically significant. If we conclude that both groups do not have different
outcomes, we can stop as in this case, the difference in the first two groups proves that
we have essential heterogeneity. If the insignificant difference is meaningful, things may
change. The difference is also negative, contrasting the existing empirical evidence for the
slope of the untreated outcome (see, e.g., Carneiro and Lee, 2009; Westphal et al., 2022).
However, it is essential to mention that never-takers should not exist with a compulsory
schooling reform, where everyone should be forced to stay in school until age 15. If this
group has never existed, this might be a measurement error. If these individuals had
special exemptions from the rule change (and therefore existed), the difference between
never-takers and untreated compliers may not inform about the global course of the curve.
Assessing the multiple complier groups that we gain by stratifying by G; (see Figure 5)
indeed suggests that never-takers are different and E[Y?|Ur = u] indeed increases when
Ug < 0.95.

Nonetheless, with only a binary instrument and without exploiting covariate heterogeneity
together with the additive separability assumption (which we will do below), an additional
linearity assumption is necessary (due to the never-takers) to point-identify a marginal
treatment effect via the method introduced by Brinch et al. (2017). We document a formal
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Table H.1: Mean outcomes by instrument response types and test for
essential heterogeneity

Unobserved heterogeneity

in the treated outcome in the untreated outcome
) @) ®) (4) ) (6)
Always-  Treated  Difference Untreated Never- Difference

takers  compliers (2) — (1) compliers takers  (5) — (4)

Panel A:
Mean recall: 9.500 8.306 —1.245%** 8.109 7.679 —0.353
(0.215) (0.332) (0.454) (0.215) (0.340) (0.396)
Share: 0.456 0.489 0.489 0.055
(0.035) (0.036) (0.036) (0.011)
Panel B:

Test for essential heterogeneity:
(sufficient condition, may be uninformative if heterogeneity is nonlinear )

Slope of E[Y}|Ug = u] —2.631%**
(0.961)

Slope of MTE E[Y} — Y?|UE = u] —1.326
(1.423)

Notes: This table presents estimates of mean outcomes for always-takers, treated and untreated compliers, and
never-takers (panel A) as well as results of a test for essential heterogeneity (panel B) using data from ELSA
waves 1-6 and our main sample selection, as outlined in Chapter 2.2. We compute the type-specific shares using
the specification of Eq. (2) without G;. The complier share is the coefficient on Z;, the always-taker share is
the constant (as all variables are demeaned), and the never-taker share is the remainder. For the type-specific
outcome means, we compute means by E; and Z; (and their interaction) using a reduced-form specification to
regress recall on the same controls and full interactions of E; and Z;. As compliers never appear alone in these
means, we use the formula provided in Imbens and Rubin (1997) and the type-specific shares. Standard errors
are computed using 200 bootstrap replications and are shown in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
indicate significance levels for the differences.

test of the slope of E[Y!|Ur = u] and E[Y! — Y°|UE = u] in Panel B.% It shows that the
slope of the treated outcome is negative and statistically significant (as shown in Panel A).
The slope of the linear MTE is also negative and still large in magnitude. However, likely
due to the concerns about never-takers outlined above, it is not statistically significant,
albeit with a negative sign. Again, evidence from the G;-specific complier groups strongly
suggests that the E[Y?|Ug = u] increases at least for a relevant range when U < 0.95. We
conclude that we likely face essential heterogeneity in our setting. Combined differences in
the first stage induced by G;, the result may be that 2SLS cannot recover the true interaction

parameter. We would need to make accurate statements about the interaction effect.

20The exact formula reads

OE[Y} Ug =u)] YT —YAT OE[Y] — YO |Up =u]  YFT —yAT yNT —yCU
oUg - nc+27TAT ’ oUr - nC_EnAT o ﬂc_i_anT ’

where YZ.AT, YiCT, Yicu, and YNT are means from Columns (1), (2), (4), and (5), respectively and mAT, 7€, gNT

are the corresponding shares (compliers do not need to be differentiated).
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I Details on the MTE estimation

We run the following two regressions:

5 1
Ei = ) ) [ﬂﬁkﬂ[Gz =gl x[Z; = k]} + controls + w; (13)
g=1k=0
5 1 1
Vo= LT [0 =g [E =z =k + conrols (18

i
—_
—
I
o
T
o

The first equation estimates G;-specific first-stage from which the complier types can be
inferred. The second equation estimates conditional means of Y;, conditional on G;, Z;,
and Y; when covariates are fixed. On these estimates, we apply the Imbens and Rubin
(1997) formula to compute G;-specific outcome means for always-takers (AT), never-takers
(NT), and (treated on untreated) compliers (C) the are plotted in Figure 5:

0¢117Tg1 — 0¢ 10700
E[Y}(G)|C,G=g] = S8 88

Tlg,1 — 7Tg,0

060,070 — 000,171
E[Y)(G)C, G =g] = = 82

Te1 — Tlg,0
E[Y)(G)INT,G;=g] = Jg01
E[Y}(G)|AT,G;=g] = 8g,1,0

These linear potential outcome curves could already solve the problems associated with
25LS estimation of interactions while using richer variations of the PGI. Based on them, we
can calculate the (interaction) effects according to Table 3 in the interval 0.55 < Up < 0.85.
Graphically, this would entail subtracting the blue from the red lines for each quintile.
However, this would require extrapolating the lines with E; = 0 to the left or the lines
with E; = 1 to the right, demonstrating the general extrapolation problem that we could
solve here by a linearity restriction. If we are willing to make this extrapolation, it yields
tive MTE curves for the effect of E; on Y;, one for each quintile, which can then be used to

calculate the interaction effects.

In the paper, we are unwilling to make such an assumption and apply the partial identifica-
tion method by Mogstad et al. (2018). As one input, the method uses the conditional means
that the coefficients ((5{{; ik and the corresponding ng,k) reflect. These are the “moments” for
the linear programming method by Mogstad et al. (2018). Figure 1.1 plots the results of this
approach, where the slightly transparent, horizontal lines are the “moments” (G;-specific
outcome means and their placement on the unit-interval, which we derive from the com-

plier shares). The blue (for the treated outcome) and red (for the untreated) lines are the
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output of this linear programming approach. They reflect the minimal (the dashed lines)
and maximal (the solid lines) possible interaction effect (defined in the main text) that the
MTR lines (Bernstein polynomials, see Figure 1.2) produce while being consistent with the

shape restrictions and matching the moments.

10+
p— 8 i
E
2 6]
e
S
=z 4
2 -
0_ T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
UE
""" min E(Y?) — max E(Y?)
""" min E(Y") — max E(Y")
Moments for E=1 by U, Moments for E=0 by U,

Figure I.1: Potential outcome curves estimated with Bernstein polynomials
Notes: This figure shows the minima and maxima of the ten potential outcome curves estimated via linear program
with Bernstein polynomials using data from ELSA waves 1-6 and our main sample selection, as outlined in Chapter
2.2. Blue indicates curves and moments for E; = 1, and red indicates E; = 0. Solid lines are maxima; dashed lines
are minima of the potential outcome curves. There are five pairs of curves for E; = 1 and five for E; = 0, one
pair for every PGI quintile. Every pair consists of a minimum and a maximum that bound the potential outcome
curve for its respective quintile. The vertical bars indicate the moments the curves must pass and the U ranges of
individuals contributing to these means.
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Figure 1.2: Graphical representation of the Bernstein base functions
Notes: This figure depicts the six Bernstein base functions that compose a Bernstein polynomial of degree five in
simulated data. The formula for each base function reads by, (1) = (3)u®(1 — u)"~?, where n = 5 is the degree, v
denotes the specific base function and u is a specific grid point on the unit interval. The formula that obtains the
MTE by the sum of all base functions weighted by the corresponding parameter 6} reads m/ (1, g) = Y.2_o 008 by, . (1),
where G; is the genetic bin, j the treatment state (as defined above) in addition to the variables and parameters
defined above.
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2nd vs. 1st quintile

3rd vs. 1st quintile

— Max E[Y'(2) -Y.°(2)] — Max E[Y;!(3) -Y,°(3)]
SHES MinE[Y/@)-YiQ)] Py Min E[Y/G) -Gl
o ———— Max E[Y, (1) -Y(1)] & ——— Max E[Y,;(1) -Y(1)] _
L Min E[Y,(1) -Y(1)] I Min E[Y, /(1) -Y(1)]
T 2 P 6 8 i > y 6 8 i
2
=
§ 4th vs. 1st quintile Sthvs. st quintile
— Max E[Y,'(4) -Y%(4)] — Max E[Y;'(5) -Y%(5)]
e MinE[Y/(4) Vi) 2 T e Min E[Y/(5) -Y/G)]
Sl MY o) B ——— MaxE[Y/(D Y1) -
. Min ELY,'(1)-Y,(1)] I Min ELY(1) Y1)
0 2 4 6 5 i 2 i 6 8 i

Unobserved distaste for education, U

Figure 1.3: Quintile comparisons of the interaction effect without never-takers

Notes: This figure shows the quintile comparisons of the interaction effect from Figure 7 when never-takers (their sample moments)
are not used to construct the MTE bounds using data from ELSA waves 1-6 and our main sample selection, as outlined in Chapter
2.2. For every PGI quintile, we estimate bounds: maxima (solid lines) and minima (dashed lines) at which the interaction effect is
maximized /minimized. The bounds for quintiles 2-4 (in blue) are compared to those of the bottom quintile (in red), our reference
category, yielding four comparisons. The gene-environment interaction is the difference between the blue and red curves at U €
[0.55,0, 85]. The thick part of the curves indicates the size of the complier share and its location on the U scale, both of which differ by

PGI quintile.
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J Robustness checks for the linear programming approach

maximum MTEs — 2 quintile minimum MTEs — 22 quintile
107 | | — 20 max.: (5%-1%) 107 | | — 20 min.: (5%-1%)
— I, max.: (5h-1%) 1%, min.: (5t-15)
> ~ 2n max.: (4-]%) 204, min.: (4%-1+)
o = I, max.: (4t-]1s) 1st, min.: (4h-1s)
2nd max.: (3rd-1st) 20 min.: (3rd-1s1)
54 s, max.: (3rd-1s) Is, min.: (3vd-1%)
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Figure ].1: MTEs when the target G x E parameter is adjusted to specific quintiles
Notes: This figure shows robustness checks for our main result in Figure 7 using data from ELSA waves 1-6 and our main sample selec-
tion, as outlined in Chapter 2.2. Here, we optimize the interaction effect for different comparisons. Whereas our preferred specification
optimizes the difference between the first and the fifth quintile (see Eq. 8), we generalize this approach and optimize differences between
the first any other quintile such that B x£(0.55,0.85,¢) = g%l fO%SSS [m'(u,g) — m®(u,g)] — [m'(u,1) — m®(u,1)]du Vg € {2,3,4,5}.
The solid lines correspond to optimizing ¢ = 5, our main result. The dashed lines show the optimization for g = 4, the dotted for g = 3,
and the dashed-dotted line for g = 2. The respective quintile G; used for the target parameter B¢ £ (0.55,0.85, g) is highlighted in bold.
Maximized and minimized MTEs are shown separately, maximized MTEs in the left and minimized MTEs in the right column. The
rows present pairwise comparisons between the first and another PGI quintile (the second quintile in the first row, the third in the
second row, ...).
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